期刊文献+

基于大数据的预防性维修在汽车行业生产管理中的实证研究 被引量:1

Empirical Research on Preventive Maintenance based on Big Data in Production Management of Automobile Industry
下载PDF
导出
摘要 随着生产技术的升级,汽车行业的制造过程自动化率显著提升,部分工艺车间,如焊装,涂装自动化程度已经超过85%。可以说,汽车制造领域内,生产管理的重点已经由对人的管理转变为对设备的管理。汽车行业在生产管理过程中,更好的发挥制造设备的最大价值,并对其进行有效的日常及故障管理,减少故障对生产的影响,依然是当前的重要课题。特别是在充分竞争的市场环境下,加强设备管理能够有效提升效率,减少成本,实现对资源使用的优化,增强企业竞争力。在中国制造2025对于数字化、智能化的发展浪潮之下,汽车领域也成为了智能制造实践拓展和理论验证的重点领域。本文结合一汽-大众的智能制造转型,论述了汽车行业设备管理现状,并结合业务实践,探讨数字化技术在预防性维修的应用,及预防性维修制造领域的业务价值。 With the upgrading of production technology,the automation rate of the manufacturing process in the automotive industry has been significantly improved,and some process workshops,such as welding,coating automation has exceeded 85%.It can be said that in the field of automobile manufacturing,the focus of production management has changed from the management of people to the management of equipment.In the process of production management in the automotive industry,it is still an important issue to give full play to the maximum value of manufacturing equipment,and to carry out effective daily and fault management to reduce the impact of faults on production.Especially in a fully competitive market environment,strengthening equipment management can effectively improve efficiency,reduce costs,optimize the use of resources,and enhance corporate competitiveness.Under the wave of digital and intelligent development of Made in China 2025,the automotive field has also become a key area of intelligent manufacturing practice expansion and theoretical verification.Combined with the intelligent manufacturing transformation of FAW-Volkswagen,this paper discusses the current status of equipment management in the automotive industry,and combines business practices to discuss the application of digital technology in preventive maintenance and the business value of preventive maintenance manufacturing.
作者 廖夏菲 Liao Xiafei
出处 《时代汽车》 2022年第21期4-6,共3页 Auto Time
关键词 汽车制造 设备管理 预防性维修 大数据 automobile manufacturing equipment management preventive maintenance big data
  • 相关文献

参考文献4

二级参考文献30

共引文献1012

同被引文献9

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部