摘要
教育游戏作为一种支持学生学习和提升学生学习绩效的重要手段,其有效性长期以来受到研究者和教师的广泛关注。以往关于教育游戏对学生学习效果影响的元分析研究通常是基于一阶元分析,但其存在一定的抽样误差,且容易受到发表偏倚影响,致使研究结论的可信度受到质疑。相对于一阶元分析,二阶元分析在更大范围整合实证研究,能够进一步提升研究结果的准确度。基于此,文章首先梳理了教育游戏对学生学习效果影响的一阶元分析研究,并阐述了二阶元分析的基本原理;然后使用二阶元分析定量综合分析了11篇一阶元分析文献,探索教育游戏对学生学习效果的整体影响及其调节因素;最后基于研究结果,对教育游戏的设计与应用提出了建议,并总结了二阶元分析的优势和局限,以期为教育游戏和元分析研究发展提供参考。
As an important way to support students’learning and improve their learning performance,educational games have been widely concerned by researchers and teachers for a long time.Previous meta-analysis studies on the impact of educational games on students’learning effects are usually based on first-order meta-analysis,but have some sampling errors and are easily affected by publication bias,and the credibility of their findings is often questioned.Compared with the first-order meta-analysis,the second-order meta-analysis can improve the accuracy of research results by integrating empirical research on a large scale.Based on this,this paper reviewed the first-order meta-analysis of the impact of educational games on students’learning effects,and explained the basic principles of second-order meta-analysis.Subsequently,this paper used second-order meta-analysis to analyze 11 first-order meta-analysis papers to explore the overall effect of educational games on students’learning effects and its moderators.Finally,based on research results,this paper put forward suggestions on the design and application of educational games,and summarized the advantages and limitations of second-order meta-analysis,expecting to provide a reference for the development of educational games and meta-analysis research.
作者
赵笃庆
沈超
余亮
ZHAO Du-qing;SHEN Chao;YU Liang(Faculty of Education,Southwest University,Chongqing,China 400715)
出处
《现代教育技术》
CSSCI
2022年第10期43-52,共10页
Modern Educational Technology
基金
2019年度教育部人文社会科学研究规划基金项目“基于情境融合的泛在学习资源个性化推荐方法研究”(项目编号:19XJA880011)
2020年度重庆市高等教育教学改革研究重点项目“构建‘互联网+’条件下的新型课堂教学模式研究”(项目编号:202051)资助。
关键词
二阶元分析
教育游戏
学习效果
二阶抽样误差
second-order meta-analysis
educational game
learning effect
second-order sampling error