期刊文献+

基于聚类算法的线上学习行为分析——以Java面向对象程序设计课程为例 被引量:2

Analysis of Online Learning Behavior Based on Clustering Algorithm:Take the Java Object-oriented Programming Course as an Example
下载PDF
导出
摘要 为了有效利用线上学习平台记录的学生学习行为数据,从多方面刻画学习者画像,充分发挥线上教学的作用,以安徽科技学院物联网专业2017级80名学生为研究对象,对其开展了Java面向对象程序设计课程线上教学。在人工智能技术的驱动下,首先统计学生学习时间和视频内容数据,分析他们的观看习惯和对重点、难点内容的重视程度;然后在K-Means++聚类算法的基础上,分析课程视频、章节检测、学习次数、作业和签到等特征对学习效果的影响。结果表明:上述方法可以帮助总结学生的学习态度、偏好和习惯,将相似学习风格的学生聚为一类。老师可以通过线上学习行为的分析调整教学内容,改进教学方法,从而改善线上教学效果。 In order to effectively use the student behavior data recorded by the online learning platform, depict the portraits of learners from various aspects, and take full advantage of the online teaching and learning, 80 students of grade 2017 majoring in Internet of Things in Anhui University of Science and Technology are taken as the research objects, and the online teaching of Java object-oriented programming course is carried out. With the help of artificial intelligence,firstly,we count the students’ learning time and collect their video content data of Java objectoriented programming course,and analyze their viewing habits and their attention paid to key and difficult content.Secondly,we analyze the influence of course videos,chapter tests,study and sign-in times,and homework performance on students’ study effects based on the K-Means++ clustering algorithm. The results show that the above methods help summarize students’ learning attitudes,preferences,and habits to categorize students with similar learning styles. In conclusion,teachers can choose teaching contents and adjust teaching methods to improve online teaching effects based on the analysis of online learning behavior.
作者 贾丙静 赵海燕 JIA Bingjing;ZHAO Haiyan(School of Information&Network Engineering,Anhui Science and Technology University,Bengbu,Anhui 233000,China)
出处 《西昌学院学报(自然科学版)》 2022年第3期119-122,共4页 Journal of Xichang University(Natural Science Edition)
基金 安徽科技学院质量工程项目(X2019034)。
关键词 JAVA面向对象程序设计 学习行为数据 K-Means++聚类算法 线上教学 Java object-oriented programming learning behavior data K-Means++clustering online teaching
  • 相关文献

参考文献7

二级参考文献59

  • 1朱钰,张颖.谈探索性数据分析[J].统计教育,1997,0(3):18-19. 被引量:5
  • 2郑葳,李芒.学习共同体及其生成[J].当代教育科学,2007(5):18-22. 被引量:62
  • 3熊平.数据挖掘算法与Clementine[M].北京:清华大学出版社,2011:1-237.
  • 4第33次中国互联网络发展状况统计报告[EB/DL].http://www.cnnic.cn/gywm/xwzx/rdxw/2014/20140l/t20140116_43823.htm.
  • 5教育部关于印发《教育信息化十年发展规划(2011-2020年)》的通知.[EB/DL].[2012-3-30]http://www.gov.cn/gzdt/2012-03/30/content2103672.htm.
  • 6刘惠如.整合式网路教学之教学设计与评量[D].台湾:国立中山大学资讯管理研究所,2000.
  • 7杨奕晨,柴蕙质.非同步网路学习成效及影响因素之计量分析[C].台湾:非同步网路教学课程中心建置研讨会,2000.
  • 8J.MichaelSpector,M.DavidMerrill,JeroenvanMerrienboer,MarcyP.Driscoll.教育传播与技术研究手册[M].任友群,焦建利,刘美凤,等主译.上海:华东师范大学出版社.2012.
  • 9Moore, M.. Three Types of Interaction[J]. The American Journal of Distance Education, 1989, (2) : 1-6.
  • 10Shapiro, A. M. and Niederhauser, D.. Learning from Hypertext:Research Issues and Findings [A]. In Handbook of Research on Educational Communications and Technology[C]. Mahwah, N J: Lawrence Erlbaum Associates, 2004.

共引文献137

同被引文献14

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部