摘要
为实现高精度测温,该文搭建了基于GaN微环谐振腔光芯片的温度测量实验装置,该装置通过可调谐DFB激光器结合光电探测器采集透射光谱传感信号,检测谐振波长变化实现温度测量。为确保测量精度,在DFB激光器上加载直流偏置电压,同时外加一定幅度的交流电压实现其波长调谐,并通过温度反馈控制模块保持激光器温度恒定,以避免温度引起激光器波长漂移。为精确验证温度测量效果,实验中通过温度控制模块精确调控芯片的温度。结果表明在20.0~24.5℃时测温灵敏度为37.29 pm/℃,该方法可降低微腔传感系统造价,促进微环谐振腔测温的实际应用。
In order to achieve high precision temperature measurement, a temperature measurement experimental device based on GaN microring resonator optical chip is built. The device collects the transmission spectrum sensing signal by tuning DFB laser combined with photoelectric detector, and detects the change of resonant wavelength to achieve temperature measurement. In order to ensure the measurement accuracy, the DC bias voltage is loaded on the DFB laser, and a certain amplitude of AC voltage is added to achieve its wavelength tuning.The temperature of the laser is kept constant through the temperature feedback control module to avoid the temperature-induced laser wavelength drift. In order to accurately verify the temperature measurement effect, the temperature of the chip is precisely controlled by the temperature control module in the experiment. The results show that the temperature sensitivity is 37.29 pm/℃ at 20.0~24.5 ℃. This method can reduce the cost of micro-cavity sensing system and promote the practical application of micro-ring resonator temperature measurement.
作者
任宏亮
徐鹏盛
卢瑾
陈浩
彭宏
周守利
张江鑫
REN Hongliang;XU Pengsheng;LU Jin;CHEN Hao;PENG Hong;ZHOU Shouli;ZHANG Jiangxin(College of Information Engineering,Zhejiang University of Technology,Hangzhou 310023,China;College of Computer Science&Technology,Zhejiang University of Technology,Hangzhou 310023,China)
出处
《实验技术与管理》
CAS
北大核心
2022年第8期118-123,136,共7页
Experimental Technology and Management
基金
浙江省自然科学基金(LY20F050009)
上海交通大学区域光纤通信网与新型光通信系统国家重点实验室开放基金(2020GZKF013)。