期刊文献+

基于粒子群算法的海上风电场优化布置 被引量:1

Optimal Layout of Offshore Wind Farms Based on Particle Swarm Optimization
下载PDF
导出
摘要 海上风电场的合理布置可以降低投资,实现风场收益最大化。以往的布置方法通常优先考虑风机尾流影响,确定风机排布后再对集电线路进行布置,忽略了集电线路成本对风机排布的影响。以国内某已建成的海上风电场为例,综合考虑风机尾流和集电线路的影响,基于粒子群算法对海上风电场进行优化布置,结果表明:与传统方法相比,该布置方法度电成本降低了0.61%。 The rational arrangement of offshore wind farms can reduce investment and maximize wind farm revenue. The previous arrangement method usually gives priority to the influence of the fan wake, and then arranges the collector circuit after determining the fan layout, ignoring the impact of the collector circuit cost on the fan layout. Taking a built offshore wind farm in China as an example,comprehensively considering the influence of wind turbine wake and current collecting lines, the optimal layout of the offshore wind farm is based on particle swarm algorithm. Compared with the traditional method, the results show that the layout method is more efficient electricity costs decreased by 0.61%.
作者 夏明鸿 彭昱坤 敬娜 余晓敏 汪仕伟 XIA Minghong;PENG Yukun;JING Na;YU Xiaomin;WANG Shiwei(GuiZhou Water&Power Survey-Design Institute Corporation Limited,Guiyang Guizhou 550002;Power China Chengdu Engineering Corporation Limited,Chengdu Sichuan 610072)
出处 《兴义民族师范学院学报》 2022年第4期101-108,共8页 Journal of Minzu Normal University of Xingyi
关键词 海上风电场 风机排布 集电线路 优化布置 offshore wind farm wind turbine arrangement collector circuit optimized arrangement
  • 相关文献

参考文献3

二级参考文献28

  • 1Fukuyama Y.Fundamentals of particle swarm techniques [A].Lee K Y,El-Sharkawi M A.Modern Heuristic Optimization Techniques With Applications to Power Systems [M].IEEE Power Engineering Society,2002.45~51
  • 2Eberhart R C,Shi Y.Particle swarm optimization:developments,applications and resources [A].Proceedings of the IEEE Congress on Evolutionary Computation [C].Piscataway,NJ:IEEE Service Center,2001.81~86
  • 3van den Bergh F.An analysis of particle swarm optimizers [D].South Africa:Department of Computer Science,University of Pretoria,2002
  • 4Kennedy J,Eberhart R C.A discrete binary version of the particle swarm algorithm [A].Proceedings of the World Multiconference on Systemics,Cybernetics and Informatics [C].Piscataway,NJ:IEEE Service Center,1997.4104~4109
  • 5Yoshida H,Kawata K,Fukuyama Y,et al.A particle swarm optimization for reactive power and voltage control considering voltage stability [A].Proceedings of the International Conference on Intelligent System Application to Power System [C].Rio de Janeiro,Brazil,1999.117~121
  • 6Angeline P.Using selection to improve particle swarm optimization [A].Proceedings of IJCNN99[C].Washington,USA,1999.84~89
  • 7Shi Y,Eberhart R C.A modified particle swarm optimizer [R].IEEE International Conference of Evolutionary Computation,Anchorage,Alaska,May 1998
  • 8Shi Y,Eberhart R C.Empirical study of particle swarm optimization [A].Proceeding of Congress on Evolutionary Computation [C].:Piscataway,NJ:IEEE Service Center,1999.1945~1949
  • 9Shi Y,Eberhart R C.Fuzzy adaptive particle swarm optimization [A].Proceedings of the Congress on Evolutionary Computation[C].Seoul,Korea,2001
  • 10Lovbjerg M,Rasmussen T K,Krink T.Hybrid particle swarm optimiser with breeding and subpopulations [A].Proceedings of the Genetic and Evolutionary Computation Conference[C].San Francisco,USA,July 2001

共引文献401

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部