期刊文献+

LSTM-Based Adaptive Modulation and Coding for Satellite-to-Ground Communications

下载PDF
导出
摘要 Satellite communication develops rapidly due to its global coverage and is unrestricted to the ground environment. However, compared with the traditional ground TCP/IP network, a satellite-to-ground link has a more extensive round trip time(RTT) and a higher packet loss rate,which takes more time in error recovery and wastes precious channel resources. Forward error correction(FEC) is a coding method that can alleviate bit error and packet loss, but how to achieve high throughput in the dynamic network environment is still a significant challenge. Inspired by the deep learning technique, this paper proposes a signal-to-noise ratio(SNR) based adaptive coding modulation method. This method can maximize channel utilization while ensuring communication quality and is suitable for satellite-to-ground communication scenarios where the channel state changes rapidly. We predict the SNR using the long short-term memory(LSTM) network that considers the past channel status and real-time global weather. Finally, we use the optimal matching rate(OMR) to evaluate the pros and cons of each method quantitatively. Extensive simulation results demonstrate that our proposed LSTM-based method outperforms the state-of-the-art prediction algorithms significantly in mean absolute error(MAE). Moreover, it leads to the least spectrum waste.
出处 《Journal of Beijing Institute of Technology》 EI CAS 2022年第5期473-482,共10页 北京理工大学学报(英文版)
基金 supported by the National High Technology Research and Development Program of China (No. 2020YFB1806004)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部