摘要
Satellite communication develops rapidly due to its global coverage and is unrestricted to the ground environment. However, compared with the traditional ground TCP/IP network, a satellite-to-ground link has a more extensive round trip time(RTT) and a higher packet loss rate,which takes more time in error recovery and wastes precious channel resources. Forward error correction(FEC) is a coding method that can alleviate bit error and packet loss, but how to achieve high throughput in the dynamic network environment is still a significant challenge. Inspired by the deep learning technique, this paper proposes a signal-to-noise ratio(SNR) based adaptive coding modulation method. This method can maximize channel utilization while ensuring communication quality and is suitable for satellite-to-ground communication scenarios where the channel state changes rapidly. We predict the SNR using the long short-term memory(LSTM) network that considers the past channel status and real-time global weather. Finally, we use the optimal matching rate(OMR) to evaluate the pros and cons of each method quantitatively. Extensive simulation results demonstrate that our proposed LSTM-based method outperforms the state-of-the-art prediction algorithms significantly in mean absolute error(MAE). Moreover, it leads to the least spectrum waste.
基金
supported by the National High Technology Research and Development Program of China (No. 2020YFB1806004)。