期刊文献+

钛镓掺杂氧化锌透明半导体薄膜的光电性能研究 被引量:1

Optical and electrical performance of titanium-gallium-zinc oxide transparent semiconductor thin films
下载PDF
导出
摘要 以玻璃作为衬底,采用射频磁控溅射技术,制备了钛镓掺杂氧化锌(TiGaZnO)透明半导体薄膜,通过紫外-可见分光光度计和霍耳效应测试系统表征,研究了沉积气压对样品光学和电学性能的影响。结果表明:所有薄膜样品在可见光波段都具有良好的透光性,其可见光平均透射率均高于81.0%。同时沉积气压对薄膜光学和电学性能也具有明显的影响,当沉积气压为0.4 Pa时,TiGaZnO薄膜具有相对高的品质因数(4.034×10^(3)Ω^(-1)·cm^(-1))和低的电阻率(1.685×10^(-3)Ω·cm),其光电综合性能较好。 The transparent semiconductor thin films of titanium-gallium-zinc oxide(TiGaZnO)were prepared on glass substrates by magnetron sputtering.The effects of deposition pressure on optical and electrical characteristics were studied by UV-Vis spectrophotometer and Hall-effect measurement system.The results demonstrate that all the prepared samples possess high transparency in the visible light region.The average transmittance in the visible range exceeds 81.0% for all the prepared samples regardless of the deposition pressure.The deposition pressure has a significant impact on the optical and electrical characteristics of the prepared samples.The thin film fabricated at deposition pressure of 0.4 Pa has relatively better optoelectronic performance,with a high figure of merit of 4.034×10^(3)Ω^(-1)∙cm^(-1) and low resistivity of 1.685×10^(-3)Ω∙cm.
作者 顾锦华 万鑫 龙浩 陈首部 钟志有 GU Jinhua;WAN Xin;LONG Hao;CHEN Shoubu;ZHONG Zhiyou(Experimental Teaching and Engineering Training Center,South-Central Minzu University,Wuhan 430074,China;Hubei Key Laboratory of Intelligent Wireless Communications,South-Central Minzu University,Wuhan 430074,China;College of Electronic Information Engineering,South-Central Minzu University,Wuhan 430074,China)
出处 《中南民族大学学报(自然科学版)》 CAS 北大核心 2022年第6期676-681,共6页 Journal of South-Central University for Nationalities:Natural Science Edition
基金 国家自然科学基金资助项目(12075322) 教育部产学合作协同育人项目(202101144002,202101352053,202101352054) 中南民族大学实验室研究项目(SYYJ2022008)。
关键词 磁控溅射技术 透明半导体 光电性能 magnetron-sputtering technique transparent semiconductor optical and electrical performance
  • 相关文献

参考文献7

二级参考文献62

  • 1Owen J, Son M S, Yoo K-H, Ahn B D and Lee S Y, Appl. Phys. Lett. 90, 033512 (2007).
  • 2Kinoshita K, Okutani T, Tanaka H, Hinoki T, Agura H, Yazawa K, Ohmi K and Kishida S, Solid-State Electron. 58, 48 (2011).
  • 3Wang Y, Tang W and Zhang L, J. Mater. Sci. Technol. 31, 175 (2015).
  • 4Tsay C Y, Fan K S and Lei C M, J. Alloy. Compd. 512, 216 (2012).
  • 5Kim S K, Kim S H, Kim S Y, Jeon J H, Gong T K, Choi D H, Son D I and Kim D, Ceram. Int. 40, 6673 (2014).
  • 6Zhou J and Zhong Z Y, Cryst. Res. Technol. 47, 944 (2012).
  • 7He X and Xiong L, J. South-Cent. Univ. Nationalities (Nat. Sci. Ed.) 30, 70 (2011). (in Chinese).
  • 8Ramalingam R J and Chung G S, Mater. Lett. 68, 247 (2012).
  • 9Huang T, Li C, Wu J, Zhou Z, Chi Q and Liu H, J. South-Cent. Univ. Nationalities (Nat. Sci. Ed.) 32, 5 (2013). (in Chinese).
  • 10Zi Xing-fa, Ye Qing, Liu Rui-ming and He Yong-tai, Journal of Optoelectronics.Laser 26, 883 (2015). (in Chinese).

共引文献12

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部