期刊文献+

基于VMD的FMCW毫米波雷达胸壁微动检测 被引量:3

VMD⁃based chest wall micromotion detection with FMCW millimeter wave radar
下载PDF
导出
摘要 人体的呼吸和心脏跳动导致的胸壁微动可通过毫米波雷达的相位变化进行记录。为了从相位中提取胸壁的微动历史,估计出呼吸和心跳的频率,提出了一种生命体征信号的提取与分离方法。首先,对毫米波雷达中频信号进行傅里叶变换,确定胸壁所处距离单元;接着,针对此距离单元中的相位进行提取与解缠绕,将相位转换为距离变量后得到包含呼吸和心跳信息的生命体征信号;最后,利用变分模态分解(VMD)算法从生命体征信号中分解得到的模态函数中确定呼吸信号和心跳信号,再采用傅里叶变换估计两者的频率。实验中,采集30 s的人体数据进行验证,成功提取到了生命体征信号波形,并分离出了呼吸和心跳信号,呼吸和心跳频率误差在8%以内。分析实验结果表明,文中所提的信号提取与分离方法能得到有效的生命体征信号,并从中估计出较为准确的呼吸和心跳频率。 The chest wall micromotion caused by the respiration and heartbeat of the human body can be recorded by the phase change of the millimeter⁃wave radar.In order to extract the micromotion historical information of the chest wall and estimate the respiration and heartbeat frequencies from the phase,a method of extracting and separating vital sign signals is proposed.Fourier transform is performed for the intermediate frequency signals of the millimeter⁃wave radar to determine the distance unit where the chest wall is located.The phase in this distance unit is extracted and unwrapped,and then is converted into a distance variable to obtain the vital sign signals containing respiration and heartbeat information.Variational mode decomposition(VMD)algorithm is used to discriminate the respiration and heartbeat signals from the modal function decomposed from the vital sign signals,and then the Fourier transform is used to estimate the frequencies of the two.In the experiment,the human body data was collected for 30 s to verify the method,the vital sign signal waveform was extracted successfully,the respiration and heartbeat signals were separated,and the errors of the respiration and heartbeat frequencies were all within 8%.The analysis of the experimental results shows that the signal extraction and separation method proposed can be used to obtain effective vital sign signals,and the respiration and heartbeat frequencies can be estimated from the vital sign signals more accurately.
作者 周佳丰 刘永泽 ZHOU Jiafeng;LIU Yongze(School of Information Science and Technology,Shijiazhuang Tiedao University,Shijiazhuang 050043,China)
出处 《现代电子技术》 2022年第21期43-49,共7页 Modern Electronics Technique
基金 河北省自然科学基金项目(F2019210253)。
关键词 胸壁微动 毫米波雷达 调频连续波 变分模态分解 中频信号处理 生命体征信号 呼吸频率 心跳频率 chest wall micromotion millimeter wave radar FMCW VMD intermediate frequency signal processing vital sign signal respiratory frequency heartbeat frequency
  • 相关文献

参考文献3

二级参考文献25

  • 1徐玲玲,徐婷婷.“互联网+”背景下智慧医疗应用现状研究[J].智能计算机与应用,2020,0(1):207-210. 被引量:20
  • 2张敏,于剑.基于划分的模糊聚类算法[J].软件学报,2004,15(6):858-868. 被引量:176
  • 3杨宇,于德介,程军圣.基于EMD与神经网络的滚动轴承故障诊断方法[J].振动与冲击,2005,24(1):85-88. 被引量:144
  • 4Huang N E, Shen Z, Long S R, et al. A new view of nonlinear waves: the Hilbert spectrum[J]. Annual Review of Fluid Mechanics, 1999(3): 417-457.
  • 5Yang Y, Cheng J S, Zhang K. An ensemble local means decomposition method and its application to local rub-impact fault diagnosis of the rotor systems [J]. Measurement, 2012(45): 561-570.
  • 6Wu Z H, Huang N E. Ensemble empirical mode decomposition: a noise assisted data analysis method [J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41.
  • 7Rilling G, Flandrin P. On the influence of sampling on the empirical mode decomposition[C]//Proceedings of IEEE Conference on Acoustics, Speech and Signal Processing, Toulouse, France, 2006.
  • 8Dragomiretskiy K , Zosso D . Variational mode decomposition[J]. IEEE Tran on Signal Processing, 2014, 62(3): 531-544.
  • 9Bezdek J C. Pattern recognition with fuzzy objective function algorithms[M]. New York, USA. Plenum Press, 1981.
  • 10Pal N R, Bezdek J C. On cluster validity for the fuzzy c-means model[J]. IEEE Transactions on Fuzzy Systems, 1995, 3(3): 370-379.

共引文献385

同被引文献4

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部