期刊文献+

视觉惯性里程计异常视觉测量的检测与处理

Detection and processing of abnormal visual measurements in Visual-Inertial Odometry
下载PDF
导出
摘要 对于视觉惯性里程计(VIO),视觉遮挡、运动物体等复杂场景可能带来异常的视觉测量,导致系统定位精确度急剧下降。对此,提出了一种新的VIO异常视觉测量的检测和处理方法。通过选取检测指标、设置先验阈值和设计检测分类器,实现对异常视觉测量的检测与分类;提出多传感器融合策略和自适应误差加权算法,及时消除与实际运动不一致的异常视觉测量的影响;最后,将异常视觉测量检测和处理算法整合到基于关键帧的视觉惯性里程计(OKVIS)系统中,提出了视觉惯性里程计的异常检测和处理(EDS-VIO)系统框架。在复杂场景仿真数据集上的评测结果表明,EDS-VIO比OKVIS取得了更好的性能,定位误差均值从1.045 m下降到0.437 m。所提方法较好地提升了VIO在复杂场景中的定位精确度和鲁棒性。 For Visual-Inertial Odometry(VIO),complex scenes,such as visual occlusion and moving objects may bring about abnormal visual measurements,which leads to dramatically drop of the positioning accuracy.To this end,a new method is proposed for detecting and processing abnormal visual measurements in VIO.Firstly,by selecting the detection index,setting the prior threshold and designing the detection classifier,the classification and detection of abnormal visual measurement are realized.After that,a multi-sensor fusion strategy and an adaptive error weighting algorithm are proposed,and these algorithms timely eliminate the influence of abnormal visual measurement which is inconsistent with the actual motion.Finally,the detection and processing algorithm of abnormal visual measurement are integrated into Open Keyframe-based Visual-Inertial SLAM(OKVIS),and the Error Detection and Solution of Visual-Inertial Odometry(EDS-VIO)framework is proposed.Evaluation results on the complex scene simulated dataset show that,compared with OKVIS,EDS-VIO has achieved better performance on the dataset,the average location error has been reduced from 1.045 m to 0.437 m.EDS-VIO improves the positioning accuracy and robustness of the VIO in complex scenes.
作者 朱涛 马惠敏 柴后青 张胜虎 ZHU Tao;MA Huimin;CHAI Houqing;ZHANG Shenghu(Department of Electronic Engineering,Tsinghua University,Beijing 100084,China;School of Computer and Communication Engineering,University of Science and Technology Beijing,Beijing 100083,China;31401 Unit of PLA,Changchun Jilin 130022,China)
出处 《太赫兹科学与电子信息学报》 2022年第10期1038-1045,共8页 Journal of Terahertz Science and Electronic Information Technology
基金 国家重点研发计划资助项目(2016YFB0100901) 国家自然科学基金资助项目(61773231) 北京市科学技术资助项目(Z191100007419001)。
关键词 视觉惯性里程计 异常视觉测量 多传感器融合 自适应误差权重 复杂场景 Visual-Inertial Odometry abnormal visual measurement multi-sensor fusion strategy adaptive error weighting complex scene
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部