期刊文献+

基于多级特征混叠融合的水下小目标检测算法 被引量:1

An Multilevel Feature Hybrid Fusion Algorithm of Underwater Small Object Detection
下载PDF
导出
摘要 针对水下探测机器人在动态巡检过程中其检测的目标尺度存在多样化变化,而传统的SSD算法在尺度特征提取能力方面有限,对远目标、小目标存在信息感知偏弱问题,提出一种基于多级特征混合融合的深度学习目标检测算法。该算法以SSD算法的骨干网络为基础,引入卷积注意力机制增强浅层网络的特征提取能力,同时,提出融合多层高语义特征信息与低语义特征信息的级联式混合融合结构,通过混合训练解决低语义层级对小目标信息特征提取困难的问题。利用水下机器人目标抓取大赛的数据集对算法的有效性进行验证,实验结果表明该算法较传统SSD算法检测精度提升了5.86%。 In the process of dynamic inspection,the traditional SSD algorithm is limited in the scale feature extraction ability and has weak information perception for remote and small targets.For the above situation,a deep learning object detection algorithm structure based on multi-level feature hybrid fusion was proposed in this paper.Based on the backbone network of SSD algorithm,the convolutional attention mechanism was introduced to enhance the feature extraction ability of shallow network,at the same time,the different levels of high semantic feature information and low semantic feature information used cascade structure for multi-level fusion,through mixed training low semantic level of small target information feature extraction problem was solved.This paper verified the effectiveness of the algorithm,and the experimental results showed that the detection accuracy was 5.86%compared to the traditional SSD algorithm.
作者 陈亮 黄代琴 时慧晶 王振飞 CHEN Liang;HUANG Daiqin;SHI Huijing;WANG Zhenfei(School of Information and Electrical Engineering,Hunan University of Science and Technology,Xiangtan 411201,China;Kunming Shipborne Equipment Research&Test Center,Kunming 650051,China)
出处 《探测与控制学报》 CSCD 北大核心 2022年第5期77-82,共6页 Journal of Detection & Control
基金 湖南省自然科学基金项目(2020JJ5170) 国家自然科学基金项目(61603132)。
关键词 水下目标检测 SSD 卷积注意力机制 特征融合 underwater target detection SSD convolutional block attention module feature fusion
  • 相关文献

参考文献5

二级参考文献12

共引文献52

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部