期刊文献+

乳腺密度自动测量与乳腺癌术后他莫昔芬治疗预后方法 被引量:2

Automatic Mammographic Density Measurement and Postoperative Tamoxifen Therapy for Breast Cancer Prognosis
下载PDF
导出
摘要 乳腺癌严重威胁人类生命健康,乳腺癌患者手术后辅以他莫昔芬治疗是常用的治疗方法。然而患者治疗后仍然面临复发或转移的风险,所以需要有效的预后方法来预测疗效。为了探索一种基于钼靶X线影像的乳腺癌术后他莫昔芬治疗预后分析方法,通过基于通道注意力机制的压缩激励卷积神经网络(squeeze-and-excitation convolutional neural network,SE-CNN)方法研究钼靶X线影像中的乳腺密度自动提取模型,提出预后影像标志物:乳腺密度变化率(mammographic density change ratio,MDCR),并进行生存分析,研究其对乳腺癌术后他莫昔芬治疗的预后能力。结果表明:SE-CNN的阈值绝对误差为9.92±4.78,决对系数为0.77,表明所提方法能够准确提取阈值。生存分析中得到无进展生存期为风险比率(hazard ratio,HR):2.654[95%CI(置信区间),1.102~6.395],P=0.030。MDCR值高的患者预后较好,反之则较差。可见乳腺密度变化率可以作为乳腺癌术后他莫昔芬治疗预后影像标志物。 Breast cancer is a serious threat to human life and health.Tamoxifen is a common treatment for breast cancer patients after surgery.However,patients still face the risk of recurrence or metastasis after treatment,so effective prognostic methods are needed to predict efficacy.In order to explore a method for prognostic analysis of postoperative tamoxifen treatment for breast cancer based on molybdenum target X-ray image.The model for mammographic density extraction from molybdenum target X-ray image was studied by using the squeeze-and-excitation convolutional neural network(SE-CNN)method.A prognostic imaging marker:mammographic density change rate(MDCR),was proposed and survival analysis was performed to study its prognostic ability for postoperative tamoxifen treatment of breast cancer.The results show that the threshold absolute error of SE-CNN is 9.92±4.78,and the determination coefficient is 0.77.The proposed method can accurately extract the threshold.The progression-free survival was hazard ratio(HR)2.654[95%CI(confidence interval),1.102~6.395],P=0.030.Patients with high MDCR has a better prognosis,while those with low MDCR has a worse prognosis.It is concluded that the rate of mammographic density change can be used as a prognostic imaging marker of postoperative tamoxifen treatment for breast cancer.
作者 李绘 李姣 黎浩江 陈树超 刘立志 陈洪波 LI Hui;LI Jiao;LI Hao-jiang;CHEN Shu-chao;LIU Li-zhi;CHEN Hong-bo(Life and Environmental Sciences College,Guilin University of Electronic Technology,Guilin 541001,China;Sun Yat-sen University Cancer Center,Guangzhou 510060,China)
出处 《科学技术与工程》 北大核心 2022年第28期12499-12504,共6页 Science Technology and Engineering
基金 国家自然科学基金(81760322,82171906) 广西研究生教育创新计划(2021YCXS174)。
关键词 乳腺癌 乳腺密度 深度学习 乳腺癌预后分析 breast cancer mammographic density deep learning breast cancer prognosis
  • 相关文献

参考文献1

二级参考文献1

共引文献2

同被引文献34

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部