期刊文献+

水平井岩屑流量预测模型研究及应用

Research and Application of Cuttings Flow-rate Prediction Model for Horizontal Wells
下载PDF
导出
摘要 钻井过程中钻井液携带岩屑返出,为了监测井眼清洁情况,减少因井眼不清洁造成钻头泥包、井壁坍塌、卡钻、漏失等复杂钻井事故,影响钻井施工,因此需要实时、连续监测钻井返出岩屑数据。然而由于岩屑计量装置发生仪器失效或者采集数据包丢失时,引发岩屑数据不完整与不连续的问题,为井眼清洁监测带来了挑战。为此研究对比了3种岩屑流量计量预测模型,解决了由于岩屑称重装置失效或采集数据包丢失造成数据异常的问题,为减少非生产时间、井眼清洁监测与评价提供了可靠的手段。 During drilling,the drilling fluid carries rock cuttings back.In order to monitor the cleanliness of the borehole and reduce the impact of complex drilling accidents such as bit rolling,borehole wall collapse,sticking and leakage caused by uncleanness of the bore⁃hole on drilling construction,it is necessary to monitor the data of returned rock cuttings in real time and continuously.However,when the cuttings metering device fails or the acquisition data packet is lost,the cuttings data will be incomplete and discontinuous,which brings challenges to borehole cleaning monitoring.For this reason,three kinds of debris flow measurement and prediction models are studied and compared,which solves the problem of abnormal data caused by the failure of the debris weighing device or the loss of the collected data packet,and provides a reliable means for reducing non production time and monitoring and evaluating borehole cleaning.
作者 王学强 王翔 雷银 陈轶林 徐煜 Wang Xueqiang;Wang Xiang;Lei Yin;Chen Yilin;Xu Yu(Engineering Technology Supervision Center,Petrochina Southwest Oil&Gas Field Company,Chengdu,Sichuan 610051,China;Engineering Technology Division,PetroChina Southwest Oil&Gas Field Company,Chengdu,Sichuan 610051,China)
出处 《石油工业技术监督》 2022年第10期15-19,共5页 Technology Supervision in Petroleum Industry
关键词 井眼清洁 岩屑称重 岩屑流量 BP神经网络 预测模型 borehole cleaning weighing of rock cuttings debris flow-rate BP neural network prediction model
  • 相关文献

参考文献11

二级参考文献49

共引文献108

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部