期刊文献+

空气热机平衡点的快速判定方法

A fast method to determine the equilibrium point of air engine
下载PDF
导出
摘要 对空气热机实验数据中获取的转速、温差等进行K型均值聚类和最近邻节点分类分析,获得空气热机是否达到平衡状态的快速判别方式,以及该判别方式在实验数据中表现出的区分能力和准确度. In order to obtain a fast discriminatory method for whether the air engine reached equilibrium,the K-means clustering and K-nearest neighbor(KNN)analysis were performed on several factors gained from the experimental data of air engine,such as the rotation rate and temperature difference.The discriminatory method showed discrimination ability and accuracy in experimental data.
作者 全泓达 盖磊 QUAN Hong-da;GAI Lei(College of Physics and Optoelectronic Engineering,Ocean University of China,Qingdao 266100,China)
出处 《物理实验》 2022年第10期46-50,共5页 Physics Experimentation
基金 教育部高等学校大学物理课程教指委(华东地区)2021年度高等学校教学研究项目(No.2021JZWHD10) 中国海洋大学2021年度本科教育教学研究项目(No.2021JY008)。
关键词 空气热机 静态测量法 平衡点 K型聚类分析 KNN分类 air engine static measurement equilibrium point K-means cluster analysis KNN classification
  • 相关文献

参考文献5

二级参考文献21

  • 1Anil K J. Data clustering:50 years beyond K-Means[J].Pattern Recognition Letters,2010,(08):651-666.
  • 2Likas A,Vlassis M,Verbeek J. The global K-means clustering algorithm[J].Pattern Recognition,2003,(02):451-461.doi:10.1016/S0031-3203(02)00060-2.
  • 3Selim S Z,Al-Sultan K S. Analysis of global K-means,an incremental heuristic for minimum sum-of-squares clustering[J].Journal of Classification,2005,(22):287-310.
  • 4Bellman R,Dreyfus S. Applied dynamic programming[M].Princeton,New Jersey:Princeton University Press,1962.
  • 5Aloise D,Deshpande A,Hansen P. NP-hardness of euclidean sum-of-squares clustering[J].Machine Learning,2009,(02):245-248.
  • 6Mahajan M,Nimbor P,Varadarajan K. The planar K-means problem is NP-hard[J].Lecture Notes in Computer Science,2009,(5431):274-285.
  • 7Ball G,Hall D. ISODATA,a novel method of data analysis and pattern classification[Technical rept. NTIS AD 699616. ][M].California:Stanford Research Institute,1965.
  • 8WANG Cheng,LI Jiao-jiao,BAI Jun-qing. Max-Min K- means Clustering Algorithm and Application in Post-processing of Scientific Computing[A].Napoli,2011.7-9.
  • 9Pena J M,Lozano J A,Larranaga P. An empirical comparison of four initialization methods for the K-means algorithm[J].Pattern Recognition Letters,1999,(20):1027-1040.doi:10.1016/S0167-8655(99)00069-0.
  • 10Lai J Z C,Tsung-Jen H. Fast global K-means clustering using cluster membership and inequality[J].Pattern Recogni- tion,2010,(43):1954-1963.

共引文献327

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部