期刊文献+

基于遗传模拟退火算法的柔性流水车间调度节能优化 被引量:4

Energy-saving Optimization of Flexible Flow Shop Scheduling based on Genetic Simulated Annealing Algorithm
下载PDF
导出
摘要 为解决柔性流水作业车间生产效率低、能耗高、加工成本高、订单周期长等问题,设计了以最小化最大完工时间、最小化总能耗为目标的车间调度模型。针对遗传算法和模拟退火算法计算效率低和易陷入局部最优的缺点,提出了一种改进遗传模拟退火算法(Improved Genetic Simulated Annealing Algorithm,IGSAA)。在遗传算法的基础上采用了动态的交叉率和变异率,以及在模拟退火算法中加入了基于逆序的局部搜索方法,提高了最优解的搜索效率,减少了算法的迭代次数。最后,通过工厂实例进行验证。结果表明,与遗传算法和模拟退火算法相比,所提算法分别节省了12.1%和21.4%的能耗,缩短了17.5%和36.7%的完工时间以及减少了20%和48.4%的迭代次数。 In order to solve the problems of low production efficiency,high energy consumption,high processing cost and long order cycle in flexible flow shop,this paper proposes to design a workshop scheduling model to minimize the maximum completion time and minimize the total energy consumption.Aiming at the shortcomings of genetic algorithm and simulated annealing algorithm,such as low computational efficiency and being easily falling into local optimum,an improved genetic simulated annealing algorithm(IGSAA)is proposed.Based on the genetic algorithm,the dynamic crossover rate and mutation rate are adopted.A local search method based on reverse order is added to the simulated annealing algorithm.As a result,the search efficiency of the optimal solution is improved and the number of iterations is reduced.Finally,it is verified by a factory instance.Results show that compared with genetic algorithm and simulated annealing algorithm,the proposed algorithm saves energy consumption by 12.1%and 21.4%,shortens the completion time by 17.5%and 36.7%,and reduces the number of iterations by 20%and 48.4%,respectively.
作者 彭来湖 王伟华 万昌江 万璐璐 PENG Laihu;WANG Weihua;WAN Changjiang;WAN Lulu(Zhejiang Sci-Tech University,Hangzhou 310000,China;Research Institute of Zhejiang Sci-Tech University in Longgang,Wenzhou 325000,China)
出处 《软件工程》 2022年第11期49-55,共7页 Software Engineering
关键词 流水车间调度 多目标优化 遗传模拟退火算法 能耗 flow shop scheduling multi-objective optimization genetic simulated annealing algorithm energy consumption
  • 相关文献

参考文献14

二级参考文献80

  • 1张超勇,饶运清,刘向军,李培根.基于POX交叉的遗传算法求解Job-Shop调度问题[J].中国机械工程,2004,15(23):2149-2153. 被引量:115
  • 2吴秀丽,孙树栋,余建军,张红芳.多目标柔性作业车间调度优化研究[J].计算机集成制造系统,2006,12(5):731-736. 被引量:59
  • 3余建军,孙树栋,郝京辉.免疫算法求解多目标柔性作业车间调度研究[J].计算机集成制造系统,2006,12(10):1643-1650. 被引量:27
  • 4何彦,刘飞,曹华军,刘纯.面向绿色制造的机械加工系统任务优化调度模型[J].机械工程学报,2007,43(4):27-33. 被引量:37
  • 5Imed Kacem,Slim Hammadi,Pierre Borne.Approach by localization and multiobjective evolutionary optimization for flexible job-shop scheduling problems. IEEE Transactions on Systems Man and Cybernetics . 2002
  • 6Pinedo M.Scheduling: theory, algorithms and systems. Journal of Women s Health . 2002
  • 7宁涛.混合量子算法在车辆路径问题中应用的研究[D].大连海事大学2013
  • 8Guohui Zhang,Xinyu Shao,Peigen Li,Liang Gao.An effective hybrid particle swarm optimization algorithm for multi-objective flexible job-shop scheduling problem[J]. Computers & Industrial Engineering . 2008 (4)
  • 9J. G. Qi,G. R. Burns,D. K. Harrison.The Application of Parallel Multipopulation Genetic Algorithms to Dynamic Job-Shop Scheduling[J]. International Journal of Advanced Manufacturing Technology . 2000 (8)
  • 10P. Brucker,R. Schlie.Job-shop scheduling with multi-purpose machines[J]. Computing . 1990 (4)

共引文献129

同被引文献49

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部