期刊文献+

基于加权最小二乘与AR模型的极移预报

Prediction of polar motion based on the weighted least squares and AR model
下载PDF
导出
摘要 目的建立加权最小二乘(Weighted Least Squares,WLS)与自回归(Autoregressive,AR)组合模型(WLS+AR)进行极移预报,以更好地体现钱德勒极移和周年极移的时变特性。方法利用极移长时序求解钱德勒项和周年项的模型参数时,通过引入权函数增强当前观测值对模型参数解算的作用,提出权比概念来解决观测值定权的问题,据此设计幂权函数和分段权函数。结果与结论利用国际地球自转和参考系服务组织(International Earth Rotation and Reference Systems Service,IERS)发布的极移数据进行预报实验,结果表明:基于2种权函数的定权策略均能提高极移预报精度,尤其对极移30~180 d的中长期预报改善更加明显;2种权函数的定权策略均适用于WLS+AR模型,其中,分段权函数的定权策略优于幂权函数。 Purposes—To propose a method for Polar Motion(PM)prediction combing the weighted least squares(WLS)and autoregressive(AR)model,so as to reflect the time-varying characteristics of the Chandler and annual wobbles in PM.Methods—The model parameters of the Chandler term and annual wobbles are solved by using long PM time-series through a WLS algorithm.In this algorithm,the concept of weight ratio between adjacent observable epoch is introduced to solve the problem with the observation weighting.The two functions,namely power and piecewise function,are designed and then employed as the WLS weighed function according to the theoretic analysis.Results and Conclusions—The PM time-series from the International Earth Rotation and Reference Systems Service(IERS)are taken as data basis for both short-term and long-term predictions.The results show that the accuracy of the predictions can be enhanced through the two weight functions introduced into the WLS+AR method.Specially,the accuracy of the medium-and long-term predictions from 30 days to 180 days is obviously improved.It is also found that the piecewise function is more potential for weighting PM observations than the power one.It is therefore concluded that the both functions can be applied to WLS+AR model for PM prediction.
作者 赵丹宁 雷雨 乔海花 徐劲松 蔡宏兵 ZHAO Dan-ning;LEI Yu;QIAO Hai-hua;XU Jin-song;CAI Hong-bing(School of Electrical and Electronic Engineering,Baoji University of Arts and Sciences,Baoji 721016,Shaanxi,China;School of Computer Science and Technology,Xi'an University of Posts and Telecommunications,Xi'an 710121,Shaanxi,China;National Time Service Center,Chinese Academy of Sciences,Xi'an 710600,Shaanxi,China;JSNU SPBPU Institute of Engineering-Sino-Russian Institute,Jiangsu Normal University,Xuzhou 221116,Jiangsu,China)
出处 《宝鸡文理学院学报(自然科学版)》 CAS 2022年第3期65-70,共6页 Journal of Baoji University of Arts and Sciences(Natural Science Edition)
基金 国家自然科学基金项目(11503031) 陕西省自然科学基础研究计划(2020JQ893 2022JM-031) 中国科学院西部之光计划(XAB2018B18) 徐州市重点研发计划(KC18079)。
关键词 极移 预报模型 加权最小二乘 自回归 权函数 polar motion prediction model weighted least squares autoregressive weight function
  • 相关文献

参考文献4

二级参考文献17

  • 1许雪晴,周永宏.地球定向参数高精度预报方法研究[J].飞行器测控学报,2010,29(2):70-76. 被引量:34
  • 2蒋达西.DORIS系统及其结果[J].紫金山天文台台刊,1994,13(1):40-46. 被引量:3
  • 3张捍卫,许厚泽,王爱生.天球参考系与地球参考系之间的坐标转换研究进展[J].测绘科学,2005,30(5):105-109. 被引量:14
  • 4Kosek W, McCarthy D D, Johnson T J, et al.Comparison of Polar Motion Prediction Results Supplied by the IERS Sub-bureau for Rapid Service and Predictions and Results of Other Prediction Methods[C]. Astrometry, Geodynamics and Solar System Dynamics: from Milliarcseconds to Microarcseconds, St. Petersburg, 2004.
  • 5Kosek W, Kalarus M, Niedzielski T. Forecasting of the Earth Orientation Parameters:Comparison o{ Dif{erent Algorithms [C]. The Celestial Rderenee Frame ~or the Future, Paris, 2008.
  • 6Kalarus M, Schch H, Kozek W, et al. Achievements of Earth Orientation Parameters Prediction Comparison Campaign [J]. Journal of Geodesy, 2010,84:587-596.
  • 7Kosek W, McCarthy D D, Luzum B J. El Nino Impact on Polar Motion Prediction Errors[J]. Studia Geophysica et Geodaetica, 2001,45 : 347-361.
  • 8Schuh H, Nagel S, Seitz T. Linear Drift and Periodic Variations Observed in Long Time Series of Polar Motion[J]. Journal of Geodesy, 2001,74: 701-710.
  • 9Zhu S Y, Prediction of Earth Rotation and Polar Motion[J]. BullGod,1982,56:258-273.
  • 10郑勇.VLBI单基线解算地球自转参数的秩亏性证明[J].测绘科学技术学报,1993,18(2):1-4. 被引量:3

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部