期刊文献+

空间热泵气体静压止推轴承静动态性能研究

Static and Dynamic Characteristics of Externally Pressurized Thrust Bearings for Space Heat Pump
下载PDF
导出
摘要 针对应用于空间热泵压缩机的氟利昂气体静压止推轴承的设计,采用动网格仿真方法对R134a气体静压止推轴承的静态和动态性能进行研究,通过实验对单孔进气止推轴承动网格仿真结果进行对比,验证了动网格仿真方法的有效性。结果表明:减小气膜厚度和增大供气压力可有效增大止推轴承的承载力,在气膜厚度较小时,通过减小气膜厚度所带来的承载力增幅很小;止推轴承的静态刚度随着供气压力增大而增大,存在一个最佳的气膜厚度使静态刚度达到最大值;随着外界激励频率的增大,止推轴承的动态刚度增大,阻尼系数减小,最后趋近于0;在相同的激励频率下,动态刚度和阻尼系数随着气膜厚度的增大而减小。 Targeting the design of the externally pressurized thrust bearings used in space heat pump compressors,the static and dynamic characteristics of an externally pressurized thrust bearing lubri-cated with R134a gas were numerically studied through dynamic mesh method.The validity of the numerical method was verified experimentally.The study results show that a higher load capacity was obtained by reducing the bearing clearance or increasing the supply gas pressure.However,when the bearing clearance was very small,a large reduction of bearing clearance only brought a slight increase in load capacity.The static stiffness increased with the increase of the supply gas pressure and there was an optimal bearing clearance to maximize the static stiffness.As the excita-tion frequency increased,the dynamic stiffness increased and the damping coefficient decreased.At the same excitation frequency,the dynamic stiffness and damping coefficient both decreased with the increase of the bearing clearance.
作者 容诚钧 李育隆 连华奇 RONG Chengjun;LI Yulong;LIAN Huaqi(School of Energy and Power Engineering,Beihang University,Beijing 100191,China)
出处 《载人航天》 CSCD 北大核心 2022年第5期653-659,共7页 Manned Spaceflight
关键词 热泵 R134a气体 静压止推轴承 静动态性能 刚度 阻尼系数 heat pump R134a gas externally pressurized thrust bearing static and dynamic char-acteristics stiffness damping coefficient
  • 相关文献

参考文献3

二级参考文献31

  • 1侯予,赵祥雄,陈双涛,陈纯正.小孔节流静压止推气体轴承静特性的数值分析[J].润滑与密封,2008,33(9):1-3. 被引量:28
  • 2郭良斌,王祖温,孙昂.小孔节流静压气体球轴承的结构参数设计[J].哈尔滨工业大学学报,2005,37(11):1595-1598. 被引量:15
  • 3郭良斌,王祖温.环面节流静压圆盘止推气体轴承的动特性计算[J].液压与气动,2006,30(7):7-11. 被引量:7
  • 4Emmen B F, Savage C J. Development of a vapor compression heat pump for space use [R]. AIAA-81-1113,1981.
  • 5Dexter P F, Haskin W L. Analysis of heat pump augmented systems for spacecraft thermal control [R]. AIAA-84-1757,1984.
  • 6Scaringe R, Buckman J, Grzyll L. Investigation of advanced heat pump augmented spacecraft heat rejection systems[R]. AIAA-89-0072, 1989.
  • 7Scaringe P, Grzyll L, Gregory S. Development of heat pump loop thermal control system for manned spacecraft habitats [R]. SAE2002-01-2467, 2002.
  • 8Space station thermal storage/refrigeration system research and development [R]. NASA CR-193841, 1993.
  • 9Hanford A J, Ewert M K. An assessment of advanced thermal control system technologies for future human space flight [R]. AIAA-96-1480, 1996.
  • 10Aidoun Z, Nikanpour D, De-parolis L. Vapour compression heat pump for a lunar lander/rover thermal control[R]. AIAA-96-1537, 1996.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部