期刊文献+

基于视觉的烟火监控云台算法研究

Research on smoke and fire monitoring PTZ algorithm based on vision
下载PDF
导出
摘要 火灾给人们的生命财产安全带来了严重威胁,做好火灾预防有着重要意义。基于人工智能和嵌入式控制技术,开发了一套基于视觉的嵌入式烟火监控云台,用于公共区域的烟火实时监控与预警。该云台使用NumPy算法库对视频图像进行快速预处理,以提高烟火检测的准确度和处理速度;使用Yolov5检测算法对视频图像中的烟雾和火焰进行分类识别,通过选取大量不同的火焰和烟雾场景制作数据集,得到烟火视频图像的检测模型,可以实现大范围的烟火监控与跟踪。实验表明,该算法可以实现通用场景下的烟火快速识别、检测与预警。 Fire has brought a serious threat to people's life and property safety.It is of great significance to do a good job in fire prevention.Based on artificial intelligence and embedded control technology,this paper develops a set of vision based embedded fireworks monitoring PTZ for real-time monitoring and early warning of fireworks in public areas.The PTZ uses NumPy algorithm library to quickly preprocess video images to improve the accuracy and processing speed of fireworks detection.Yolov5 detection algorithm is used to classify and recognize the smoke and flame in the video image.By selecting a large number of different flame and smoke scenes to make data sets,the detection model of fireworks video image is obtained,which can realize a wide range of fireworks monitoring and tracking.Experiments show that the PTZ algorithm can realize the rapid recognition,detection and early warning of fireworks in general scenes.
作者 李博 刘磊 Li Bo;Liu Lei(Tianjin Shengda Fire Industrial Corporation,Tianjin 300381;Tianjin University of Science and Technology,Tianjin 300222)
出处 《今日消防》 2022年第9期34-36,共3页
关键词 云台系统 图像识别 深度学习 烟火监控 PTZ system image recognition deep learning fireworks monitoring
  • 相关文献

参考文献6

二级参考文献52

  • 1张旗,梁德群,樊鑫,李文举.基于小波域的图像噪声类型识别与估计[J].红外与毫米波学报,2004,23(4):281-285. 被引量:32
  • 2邓宇,李振波,李华.图切割支持的融合颜色和梯度特征的实时背景减除方法[J].计算机辅助设计与图形学学报,2006,18(11):1741-1747. 被引量:4
  • 3Alexei A Efros, Alexander C Berg, Greg Mori, Jitendra Malik.Recognizing Action at a Distance [ C ]. International Conference on Computer Vision (ICCV) , 2003.
  • 4C Wen, A Azarbayejani, T Darrell and A Pentland. Pfinder:Real -Time Tracking of the Human Body. [J]. IEEE Trans.Pattern Analysis and Machine Intelligence, 1997, 19(7).
  • 5W E L Grimson, C Stauffer, R Romano and L Lee. Using Adaptive Tracking to Classify and Monitor Activities in a Site[C]. Proc. IEEE conf. Computer Vision and Pattern Recognition(CVPR) , 1998.
  • 6Robert T Collins, Alan J Lipton, Takeo Kanade. Special Section on Video Surveillance[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, August 2000, 22(8) : 745- 746.
  • 7Paul Viola, Michael J Jones, Daniel Snow. Detecting Pedestrians Using Patterns of Motion and Appearance [C].International Conference on Computer Vision (ICCV) , 2003.
  • 8Eric Hayman, Jan - Olof Eklundh. Statistical Background Subtraction for a Mobile Observer[ C ]. International Conference on Computer Vision (ICCV), 2003.
  • 9J Rymal, J Renno, D Greenhill, J Orwell, G A Jones.Adaptive Eigen - backgrounds for Detection[C]. The IEEE International Conference on Image Processing (ICIP) ,200d.
  • 10P Spagnolo, M Leo, T D' Orazio, A Distante. Robust Moving Objects Segmentation by Background Subtraction[C]. The International Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS) ,2004.

共引文献176

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部