期刊文献+

基于非稠环核心的小分子受体材料的合成与光伏应用 被引量:1

Synthesis and Photovoltaic Application of Small Molecular Acceptor Materials Based on Non-Fused Ring Cores
下载PDF
导出
摘要 近年来,基于非稠环核心的电子受体因具有结构简单的优势,成为有机光伏材料领域的研究热点。本研究通过将2个环戊二烯并二噻吩单元和1个氟代苯并[c]-[1,2,5]噻二唑单元通过Stille偶联反应合成非稠环核心单元,随后与末端吸电子单元3-已基罗丹宁通过Knoevenagel缩合反应合成小分子受体材料(5Z,5'Z)-5,5'-((6,6'-(5,6-二氟苯并[c][1,2,5]噻二唑-4,7-二基)双(4,4-双(2-乙基己基)-4H-环戊二烯[1,2-b:5,4-b']二噻吩-6,2-二基))双(甲亚基))双(3-己基-2-硫代噻唑啉酮)(MAZ-4)。该受体材料在350~710 nm范围内具有强的吸收,在给体材料聚(3-己基噻吩)和受体材料MAZ-4质量比为1∶1.2的条件下,有机太阳能电池的最佳能量转换效率为0.76%。 The electron acceptors based on non-fused ring cores draw great attention in the field of organic photovoltaic materials due to their simple structures in recent years.The non-fused ring core,one fluorinated benzo[c]-[1,2,5]thiadiazole unit flanked with two cyclopentanedithiophene units,was firstly synthesized by stille coupling reaction,and then it was used to synthesize the non-fused ring based electron acceptors(5Z,5'Z)-5,5'-((6,6'-(5,6-difluorobenzo[c][1,2,5]thiadiazole-4,7-diyl)bis(4,4-bis(2-ethylhexyl)-4H-cyclopenta[1,2-b:5,4-b']dithiophene-6,2-diyl))bis(methanylylidene))bis(3-hexyl-2-thioxothiazolidin-4-one)(MAZ-4)via Knoevenagel condensation reaction with 3-hexyl-rhodanine as the terminal electron-with drawing unit.The small molecule shows a strong absorption in the range 350-710 nm,and the optimal power conversion efficiency of the organic solar cell is 0.76%when the mass ratio of the donor material poly(3-hexylthiophene-2-5-diyl)and the acceptor material MAZ-4 is 1∶1.2.
作者 刘紫凤 李俊闹 孙逢博 高翔 高建宏 刘治田 LIU Zifeng;LI Junnao;SUN Fengbo;GAO Xiang;GAO Jianhong;LIU Zhitian(School of Materials Science and Engineering,Wuhan Institute of Technology,Wuhan 430205,China)
出处 《武汉工程大学学报》 CAS 2022年第5期516-521,共6页 Journal of Wuhan Institute of Technology
基金 国家自然科学基金(51973169)。
关键词 有机太阳能电池 小分子受体材料 非稠环 organic solar cells small molecular acceptor materials non-fused ring
  • 相关文献

参考文献3

二级参考文献46

  • 1Tan Wang,Jianqiang Qin,Zuo Xiao,Xianyi Meng,Chuantian Zuo,Bin Yang,Hairen Tan,Junliang Yang,Shangfeng Yang,Kuan Sun,Suyuan Xie,Liming Ding.A 2.16 eV bandgap polymer donor gives 16%power conversion efficiency[J].Science Bulletin,2020,65(3):179-181. 被引量:14
  • 2Li YF. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. Ace Chem Res, 2012, 45:723-733.
  • 3Hains AW, Liang Z. Woodhouse MA, Gregg BA. Molecular semi- conductors in organic photovoltaic cells. Chem Rev, 2010, 110: 6689-6735.
  • 4Chen J, Cao Y. Development of novel conjugated donor polymers lbr high-efficiency bulk-heterojunction photovoltaic devices. Ace Chem Res, 2009.42:1709-|718.
  • 5Li G, Zhu R, Yang Y. Polymer solar cells. Nat Photon, 2012, 6: 153-161.
  • 6Chen YS, Wan X J, Long GK. High perfornaance photovoltaic appli- cations using solution-processed small molecules. Ace Chem Res, 2013, 46:2645-2655.
  • 7Krebs FC. Espinosa N, Hsel M, Sondergaard RR, Jcrgensen M. 25th Anniversary article: rise Io power--OPV-based solar parks. Adv Ma-tel, 2014, 26:29-39.
  • 8Lin YZ, Li YF. Zhan XW. Small molecule semiconductors for high-efficiency organic photowltaics. Chem Soc Rev, 2012, 41: 4245-4272.
  • 9Liu YS, Cben CC, Hong Z, Gao J, Yang Y, Zhou H, Dou LT, Li G. Solution-processed small-molecule solar cells: breaking the 10% power conversion efficiency. Sci Rep, 2013, 3:3356.
  • 10Ynu JP, Chen CC, Hong Z, Yoshimura K, Ohya K, Xu R, Ye S, Gao J, Li G, Yang Y. 10.2% power conversion efficiency polymer tandem solar cells consisting of two identical sub-cells. Adv Mater, 2013.25: 3973-3978.

共引文献86

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部