期刊文献+

Inverse Lax-Wendroff Boundary Treatment: a Survey

原文传递
导出
摘要 The inverse Lax-Wendroff(ILW)procedure is a numerical boundary treatment technique,which allows finite difference schemes and other schemes to achieve stability and high order accuracy when using cartesian meshes to solve boundary value problems defined on complex computational domain.In this short survey we summarize the main ingredients of the ILW procedure,discuss its applicability and stability properties,and provide possible directions of its future development.
作者 Chi-Wang Shu
出处 《Communications in Mathematical Research》 CSCD 2022年第3期333-350,共18页 数学研究通讯(英文版)
基金 supported by NSF(Grant DMS-2010107).
  • 相关文献

参考文献4

二级参考文献19

  • 1R. Abgrall, Numerical discretization of the first-order Hamilton-Jacobi equation on triangular meshes, Commun. Pur. Appl. Math., 49 (1996), 1339-1373.
  • 2M. Boue and P. Dupuis, Markov chain approximations for deterministic control problems with affine dynamics and quadratic cost in the control, SIAM J. Numer. Anal., 36 (1999), 667-695.
  • 3Y. Cheng and C.-W. Shu, A discontinuous Galerkin finite element method for directly solving the Hamilton-Jacobi equations, J. Comput. Phys., 223 (2007), 398-415.
  • 4M. Crandall and P.L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Transactions of American Mathematical Society, 277 (1983), 1-42.
  • 5M. Crandall and P.L. Lions, Monotone difference approximations for scalar conservation laws, Math. Comput., 34 (1984), 1-19.
  • 6C. Hu and C.-W. Shu, A discontinuous Galerkin finite element method for Hamilton-Jacobi equations, SIAM J. Sci. Comput., 21 (1999), 666-690.
  • 7L. Huang, S.C. Wong, M. Zhang, C.-W. Shu and W.H.K. Lam, Revisiting Hughes' dynamic continuum model for pedestrian flow and the development of an efficient solution algorithm, Transportation Research Part B, submitted.
  • 8G. Jiang and D.P. Peng, Weighted ENO schemes for Hamilton-Jacobi equations, SIAM J. Sci. Comput., 21 (2000), 2126-2143.
  • 9P.D. Lax and B. Wendroff, Systems of conservation laws, Commun. Pur. Appl. Math., 13 (1960), 217-237.
  • 10F. Li, C.-W. Shu, Y.-T. Zhang and H. Zhao, A second order discontinuous Galerkin fast sweeping method for Eikonal equations, J. Comput. Phys., submitted.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部