期刊文献+

基于稀光流的疑似烟雾提取算法

Suspected smoke extraction algorithm based on thin light flow
下载PDF
导出
摘要 森林火灾时有发生,不仅会造成重大的经济损失,还会影响人们的生活和生产,甚至危害人们的生命。因此,检测火灾是否发生尤为重要。随着视频监控的普及,通过视频烟雾检测技术对森林火灾进行监控变得更有研究意义。其中,疑似烟雾区域提取算法的功能对后期的分类识别有着极为重要的影响。由于常用的几种疑似烟雾区域提取算法各有局限,文章根据森林环境针对光流法进行改进,决定结合特征点检测进行稀疏光流估计,再以运动的特征点为中心分割图像块。通过运动方向是否向上降低云雾干扰,是否符合HSV颜色特征阈值等条件筛选出待分类的疑似烟雾区域。 Forest fires occur from time to time,which will not only cause great economic losses,but also affect people’s lives and production,and even endanger people’s lives.Therefore,it is particularly important to detect whether a fire occurs.With the popularity of video surveillance,video smoke detection technology for forest fire monitoring has become more meaningful.Among them,the function of the suspected smoke area extraction algorithm has a very important impact on the later classification and recognition.Due to the limitations of several commonly used algorithms for extracting suspected smoke areas,the optical flow method is improved according to the forest environment,and it is decided to combine feature point detection to estimate sparse optical flow,and then segment image blocks with moving feature points as the center.The suspected smoke areas to be classified are screened out by whether the moving direction reduces the cloud interference upwards and whether it meets the HSV color feature threshold.
作者 朱家玉 刘国巍 ZHU Jiayu;LIU Guowei(School of Electrical and Information Engineering,Anhui University of Technology,Huainan 23200l,China)
出处 《中国高新科技》 2022年第16期130-131,154,共3页
关键词 疑似烟雾 光流法 特征点 suspected smoke optical flow method feature point
  • 相关文献

参考文献2

二级参考文献29

  • 1袁非牛,廖光煊,张永明,刘勇,于春雨,王进军,刘炳海.计算机视觉火灾探测中的特征提取[J].中国科学技术大学学报,2006,36(1):39-43. 被引量:52
  • 2Yamagishi H, Yamaguchi J. Fire flame detection algorithm using a color camera[A]. In: Proceedings of 1999 International Symposium on Micromechatronics and Human Science[ C ], Nagoya,Japan, 1999 : 255 - 260.
  • 3Yamagishi H, Yamaguchi J. A contour fluctuation data processing method for fire flame detection using a color camera [ A ]. In: Proceedings of IEEE 26th Annual Conference on IECON of the Industrial Electronics Society [ C ], Nagoya, Japan, 2000:824 - 829.
  • 4Noda S,Ueda K. Fire detection in tunnels using an image processing method[ A]. In: Proceedings of Vehicle Navigation and Information Systems Conference[ C ] , Yokohama,Japan, 1994:57 - 62.
  • 5Phillips Ⅲ W, Shah M,Da Vitoria Lobo N. Flame recognition in video [ A]. In: Proceedings of Fifth IEEE Workshop of Applications of Computer Vision[ C ] , California, USA ,2000:224 - 229.
  • 6Yuan Fei-niu,Liao Guang-xuan, Fan Wei-Cheng, et al. Vision based fire detection using mixture gaussian model [ A ]. In : Proceedings of the 8th IAFSS 2005 [ C ] , Beijing, China,2005 : 1575 - 1583.
  • 7Chen Thou-ho, Kao Cheng-liang, Chang Sju-ma. An intelligent realo time fire-detection method based on video processing [ A ]. In: Proceedings of IEEE 37th Annual 2003 International Carnahan Conference on Security Technology [ C ], Taipei, Taiwan, 2003 : 104 - 111.
  • 8Healey G, Slater D, Lin T,et al. A system for real-time fire detection [A]. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition [ C ] , New York, USA, 1993:605 - 606.
  • 9Aird B, Brown A. Detection and alarming of the early appearance of fire using CCTV cameras [ A ]. In: Proceedings of Nuclear Engineering International Fire & Safety Conference [ C/CD ], London, UK, 1997.
  • 10Cappellini V, Mattii L, Meeocei A. An intelligent system for automatic fire detection in forests [ A]. Pattern Analysis and Recognition[ C], University of Florence, Italy, 1989:351 - 364.

共引文献143

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部