期刊文献+

扫掠冲击-气膜冷却结构的气动传热特性数值研究 被引量:3

Numerical Investigation on Aerodynamic and Heat Transfer Characteristics of Sweeping Impingement and Film Composite Cooling Structure
下载PDF
导出
摘要 为了揭示“扫掠冲击-气膜”冷却结构的换热机理,采用气热耦合方法和SST k-ω湍流模型,对比分析了吹风比为1,2,3,4和气膜孔角度为30°,45°,55°,65°等条件下,“直接冲击-气膜”组合方式和“扫掠冲击-气膜”组合方式在平板模型上的气动传热特性。结果表明,流体激振器的扫掠频率、冲击靶面上的Nu数随吹风比增大而增大,并且几乎不受气膜孔角度影响。两种组合方式的总压损失系数和综合冷却效率随吹风比增大而增大,并且随气膜孔角度的增大而略微减小。尽管在使用相同冷气流量时“扫掠冲击-气膜”组合方式的冷气进口静压较高,但是其具有冲击靶面上Nu数分布均匀、综合冷却效率更高且分布面积更大的优势。 In order to reveal the heat transfer mechanism of "sweeping impingement & film" composite cooling,the aerodynamic and heat transfer characteristics of "direct impingement & film" composite cooling and "sweeping impingement & film" composite cooling on a flat plate model were compared and analyzed by using SST k-ω turbulence model and conjugate heat transfer method under the conditions of blowing ratio of 1,2,3,4 and film hole angle of 30°,45°,55° and 65°. The results show that the sweep frequency of the fluidic oscillator and Nusselt number Nu on the impinging surface increase with the increase of the blowing ratio,and are hardly affected by the angle of film holes. The total pressure loss coefficient and overall cooling effectiveness of the two composite cooling increase with the increase of blowing ratio,and slightly decrease with the increase of film hole angle. Although the coolant inlet static pressure of "sweeping impingement & film" composite cooling is high when using the same coolant flow,it has the advantages of uniform Nu distribution on the impinging surface,higher overall cooling effectiveness and larger distribution area.
作者 孔祥灿 张子卿 李国庆 朱俊强 徐进良 张燕峰 KONG Xiang-can;ZHANG Zi-qing;LI Guo-qing;ZHU Jun-qiang;XU Jin-liang;ZHANG Yan-feng(Key Laboratory of Light-Duty Gas-Turbine,Institute of Engineering Thermophysics,Chinese Academy of Sciences,Beijing 100190,China;School of Energy,Power and Mechanical Engineering,North China Electric Power University,Beijing 102206,China;University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《推进技术》 EI CAS CSCD 北大核心 2022年第10期174-186,共13页 Journal of Propulsion Technology
基金 国家科技重大专项(J2019-Ⅱ-0002-0022) 国家自然科学基金(51876202,51976214)。
关键词 涡轮 叶片 气膜冷却 复合冷却 气热耦合 冷却效率 Turbine Blade Film cooling Composite cooling Conjugate heat transfer Cooling effectiveness
  • 相关文献

参考文献3

二级参考文献22

  • 1周勇,赵晓路,徐建中.非定常激波对气膜冷却影响的数值模拟[J].工程热物理学报,2007,28(6):933-935. 被引量:7
  • 2Goldstein, R. J., Eckert, E. R. G, and Burggraf, E, (1974), Effects of Hole Geometry and Density on Three-Dimen- sional Film Cooling, International Journal of Heat and Mass Transfer, Vol. 17, pp. 595-607.
  • 3Bunker, R.S., (2005), A Review of Shaped Hole Turbine Film-Cooling Technology, ASME Journal of Heat Trans- fer, Vol. 127, No.2, pp.441-457.
  • 4Kusterer, K., Tekin, N., Kasiri, A., Bohn, D., Sugimoto, T., Tanaka, R., and Kazari, M., (2013), Highest Efficient Film Cooling by Improved Nekomimi FiLm Cooling - Part 2: Hot Gas Flow Conditions, ASME paper GT2013- 95042, Proceedings of ASME Turbo Expo 2013, June 3- 7, San Antonio, Texas, USA.
  • 5Bunker, R. S., (2010), Film Cooling: Breaking the Limits of the Diffusion Shaped Hole, Heat Transfer Research, Vol.41, No.6, pp.627-650.
  • 6Hailer, B. R. and Camus, J. J., (1984) Aerodynamic Loss Penalty Produced by Film Cooling Transonic Turbine Vanes, ASME Journal of Engineering for Gas Turbines and Power, Vol. 106, No. 1, pp. 198-205.
  • 7Day, C. R. B., Oldfield, M. L. G, and Lock, G D., (2000) Aerodynamic Performance of an Annular Cascade of Film Cooled Nozzle Guide Vanes under Engine Repre- sentative Conditions, Experiments in Fluids, Vol.29, No. 2, pp.117-129.
  • 8Gomes, R. A., (2012), Aerothermodynamics of a High- Pressure Turbine Vane with Very High Loading and Vor-tex Generators, ASME Journal of Turbomachinery, Vol.134, 011020.
  • 9Friedrichs, S., and Hodson, H. P., (1997), Aerodynamic Aspects of EndwaU Film-Cooling, ASME Journal of Turbomachinery, Vol. 119, No.4, pp.786-793.
  • 10Colban, W., and Thole, K., (2007), Influence of Hole Shape on the Performance of a Turbine Vane EndwaU Film-cooling Scheme, International Journal of Heat and Fluid Flow, Vol.28, No.3, pp.41-356.

共引文献7

同被引文献24

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部