期刊文献+

Sulfur-driven methylmercury production in paddies continues following soil oxidation

原文传递
导出
摘要 Methylmercury(MeHg) production in paddy soils and its accumulation in rice raise global concerns since rice consumption has been identified as an important pathway of human exposure to MeHg. Sulfur(S) amendment via fertilization has been reported to facilitate Hg methylation in paddy soils under anaerobic conditions, while the dynamic of S-amendment induced MeHg production in soils with increasing redox potential remains unclear. This critical gap hinders a comprehensive understanding of Hg biogeochemistry in rice paddy system which is characterized by the fluctuation of redox potential. Here, we conducted soil incubation experiments to explore MeHg production in slow-oxidizing paddy soils amended with different species of S and doses of sulfate. Results show that the elevated redox potential(1) increased MeHg concentrations by 10.9%-35.2%, which were mainly attributed to the re-oxidation of other S species to sulfate and thus the elevated abundance of sulfatereducing bacteria, and(2) increased MeHg phytoavailability by up to 75% due to the reductions in acid volatile sulfide(AVS) that strongly binds MeHg in soils. Results obtained from this study call for attention to the increased MeHg production and phytoavailability in paddy soils under elevated redox potentials due to water management, which might aggravate the MeHg production induced by S fertilization and thus enhance MeHg accumulation in rice.
出处 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2022年第9期166-174,共9页 环境科学学报(英文版)
基金 the financial support from the Natural Science Foundation of Jiangsu Province (Nos. BK 20190319 , BK20200322 ) the National Natural Science Foundation of China (No. U2032201 )。
  • 相关文献

参考文献1

二级参考文献2

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部