期刊文献+

基于Catboost和Stacking融合模型的长江中下游短时临近降水预报研究 被引量:3

Short-range forecast of precipitation over the middle-lower reaches of the Yangtze River based on the Catboost and Stacking model
下载PDF
导出
摘要 用中国自动站与CMORPH降水产品融合的逐小时降水量网格数据集、全球预报系统(Global Forecasting System,GFS)模式再分析资料,将机器学习特征算法筛选的特征变量作为模型输入数据,运用Catboost模型和以Catboost和随机森林为初级模型、径向基神经网络为次级模型的融合模型预测未来6 h累计降水等级,并应用公平TS评分(Equal Threat Score,ETS)、真实技巧评分(True Skill Statistic,TSS)、混淆矩阵、预报偏差(Bias值)、击中率(Probability of Detection,POD)对预报结果进行检验分析。结果表明:优化变量的输入有利于提高模型的准确率;Catboost模型和融合模型都可以在一定程度上辨别晴雨状况;仅非动力学变量参与的融合模型对雨区预报准确率最高,但容易将暴雨雨区预报得更加广泛。总体而言,融合模型具有更强、更稳定的预报性能,中到暴雨量级预报准确率还待进一步提高。 The Catboost model and the Stacking model which has Catboost and Random Forest(RF) as the primary predictive model,a secondary predictive model was developed using Radial Basis Function(RBF) to predict 6 h accumulated precipitation-grade over the middle-lower reaches of the Yangtze River based on data from the hourly precipitation data merged by China Automatic Weather Station(CAWS) and CMORPH precipitation products and the Global Forecasting System(GFS) reanalysis.Comprehensively considering ETS score,TSS score,confusion matrix,Bias and POD(Probability of Destection) were analyzed the precipitation-grade forecast ability of two models.The results showed that:optimized the input variables is beneficial to improve the accuracy of the models;both the Catboost model and the Stacking model can distinguish clear and rainy conditions to a certain extent;the Stacking model with only non-dynamic variables has the highest prediction accuracy for the rain areas,but it can overly predict the heavy rain areas more widely.Above all,the Stacking model has stronger and more stable forecasting performance,however the prediction accuracy of moderate to heavy rainfall needs to be further improved.
作者 宋慧娟 陈耀登 欧阳霖 陈海琴 高哲凡 孙涛 SONG Huijuan;CHEN Yaodeng;OUYANG Lin;CHEN Haiqin;GAO Zhefan;SUN Tao(Key Laboratory of Meteorological Disaster of Ministry of Education/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters,Nanjing University of Information Science and Technology,Nanjing 210044,China)
出处 《气象科学》 北大核心 2022年第5期569-580,共12页 Journal of the Meteorological Sciences
基金 国家自然科学基金资助项目(42075148) 江苏省“六大人才高峰”计划资助项目(RJFW-016) 江苏省大学生创新创业训练计划项目(201910300024Z)。
关键词 机器学习 短时临近预报 长江中下游 降水 融合模型 machine learning short-range forecast the middle-lower reaches of the Yangtze River precipitation Stacking model
  • 相关文献

参考文献14

二级参考文献198

共引文献1093

同被引文献42

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部