期刊文献+

Identification and characterization of Fe_(3)O_(4)/peroxodisulfate advanced oxidation products from sulfameter 被引量:1

原文传递
导出
摘要 Sulfonamides(SAs)are one of the most widely used antibiotics and their residuals in the environment could cause some negative environmental issues.Advanced oxidation such as Fenton-like reaction has been widely applied in the treatment of SAs polluted water.Degradation rates of 95%-99.7%were achieved in this work for the tested 8 SAs,including sulfisomidine,sulfameter(SME),phthalylsulfathiazole,sulfamethoxypyridazine,sulfamonomethoxine,sulfisoxazole,sulfachloropyridazine,and sulfadimethoxine,in the Fe_(3)O_(4)/peroxodisulfate(PDS)oxidation system after the optimization of PDS concentration and p H.Meanwhile,it was found that a lot of unknown oxidation products were formed,which brought up the uncertainty of health risks to the environment,and the identification of these unknown products was critical.Therefore,SME was selected as the model compound,from which the oxidation products were never elucidated,to identify these intermediates/products.With liquid chromatography-high resolution tandem mass spectrometry(LC-HRMS/MS),10 new products were identified,in which 2-amino-5-methoxypyrimidine(AMP)was confirmed by its standard.The investigation of the oxidation process of SME indicated that most of the products were not stable and the degradation pathways were very complicated as multiple reactions,such as oxidation of the amino group,SO_(2)extrusion,and potential cross-reaction occurred simultaneously.Though most of the products were not verified due to the lack of standards,our results could be helpful in the evaluation of the treatment performance of SAs containing wastewater.
出处 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2022年第12期227-235,共9页 环境科学学报(英文版)
基金 supported by the National Natural Science Foundation of China(Nos.21607020,21876022,41977197)。
  • 相关文献

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部