期刊文献+

基于注意力门残差网络的遥感影像道路提取 被引量:1

Road extraction from remote sensing images based on attention gate residual network
下载PDF
导出
摘要 针对遥感影像道路提取出现的无关噪声多,道路不连续问题,本文通过改进U-Net提出了基于注意力门残差网络的道路提取算法。首先,编码器部分引入残差块传递原始特征,在保证网络深度的同时,使梯度能够有效传递;其次,在连接层使用多尺度空洞卷积特征提取模块,来充分挖掘图像中的多尺度特征信息;最后,用注意力门将浅层网络信息和反卷积信息融合实现解码,以抑制浅层噪声特征。使用的数据集包括Massachusetts Roads Dataset数据集和CVPR DeepGlobe 2018道路提取挑战赛数据集。实验结果表明,该算法可以有效提升道路分割的效果。 Aiming at the problem that there are many independent noises and discontinuity in road extraction from remote sensing images, a semantic segmentation algorithm of Residual Attention U-Net is proposed by improving U-Net.Firstly, the encoder introduces the original character of residual block transfer, which can guarantee the depth of the network and make the gradient transfer efficiently. Then, multiscale dilated convolution extraction module is used in the connection layer to fully mine the feature information in the image.Finally, the decoder uses the attention gate to fuse the shallow network information with the deconvolution information to suppress the shallow noise characteristics.The used datasets include the Massachusetts Roads Dataset and the CVPR DeepGlobe 2018 Road Extraction Challenge dataset.The experimental results show that the algorithm can effectively improve the effect of road segmentation.
作者 李文书 李绅皓 赵朋 LI Wenshu;LI Shenhao;ZHAO Peng(School of Information Science and Technology,Zhejiang Sci-Tech University,Hangzhou 310018,China)
出处 《智能计算机与应用》 2022年第10期31-35,42,共6页 Intelligent Computer and Applications
基金 国家自然科学基金(31771224,61603228) 国家科技部重点研发计划重点专项课题(2018YFB1004901) 浙江省自然科学基金(LY17C090011,LGF19F020009)。
关键词 道路提取 遥感影像 残差网络 门控卷积 U-Net road extraction remote sensing images residual network gated convolution U-Net
  • 相关文献

参考文献4

二级参考文献34

  • 1刘曙光,郑崇勋,刘明远.前馈神经网络中的反向传播算法及其改进:进展与展望[J].计算机科学,1996,23(1):76-79. 被引量:51
  • 2MENA J B.State of the Art on Automatic Road Extraction for GIS Update:A Novel Classification[J].Pattern Recognition Letters,2003,24(16):3037-3058.
  • 3DAS S,MIRNALINEE T T,VARGHESE K.Use of Salient Features for the Design of a Multistage Framework to Extract Roads from High-resolution Multispectral Satellite Images[J].IEEE Transactions on Geoscience and Remote Sensing,2011,49(10):3906-3931.
  • 4MIAO Zelang,WANG Bin,SHI Wenzhi,et al.A Semi-automatic Method for Road Centerline Extraction from VHR Images[J].IEEE Geoscience and Remote Sensing Letters,2014,11(11):1856-1860.
  • 5HU Xiangyun,ZHANG Zuxun,TAO C V.A Robust Method for Semi-automatic Extraction of Road Centerlines Using a Piecewise Parabolic Model and Least Square Template Matching[J].Photogrammetric Engineering & Remote Sensing,2004,70(12):1393-1398.
  • 6ZHOU Jun,BISCHOF W F,CAELLI T.Road Tracking in Aerial Images Based on Human-computer Interaction and Bayesian Filtering[J].ISPRS Journal of Photogrammetry and Remote Sensing,2006,61(2):108-124.
  • 7VOSSELMAN G,DE KNECHT J.Road Tracing by Profile Matching and Kaiman Filtering[M]//GRUEN A,Kuebler O,Agouris P.Automatic Extraction of Man-made Objects from Aerial and Space Images.Basel:Birkh?user,1995:265-274.
  • 8HU Xiangyun,ZHANG Zuxun,ZHANG Jiangqing.An Approach of Semiautomated Road Extraction from Aerial Image Based on Template Matching and Neural Network[J].International Archives of Photogrammetry and Remote Sensing,2000,33(B3):994-999.
  • 9SILVERMAN B W.Density Estimation for Statistics and Data Analysis[M].London:Chapman and Hall,1986.
  • 10YANG Changjiang,DURAISWAMI R,DAVIS L.Efficient Mean-Shift Tracking via a New Similarity Measure[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.San Diego,CA:IEEE,2005,1:176-183.

共引文献84

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部