期刊文献+

多孔材料对轮胎空腔共振降噪机理的研究 被引量:1

Noise reduction mechanism of porous materials for tire cavity resonance
下载PDF
导出
摘要 轮胎空腔共振噪声对汽车NVH性能有决定性影响。为研究轮胎内部添加多孔材料的降噪机理,从轮胎力传递率出发,通过试验验证了轮胎力传递率与空腔噪声的一致性;建立了轮胎力传递率模型,并验证了模型的准确性;通过该模型研究了多孔材料对轮胎空腔共振噪声的降噪机理。结果表明:多孔材料对轮胎空腔共振降噪效果是耦合结构振动与声学降噪共同作用的结果,选择多孔材料时要综合考虑多孔材料的物理参数与声学参数,研究结果为改善汽车NVH性能和提高低噪声轮胎设计水平奠定理论基础和方法指导。 The tire cavity resonance noise has a decisive influence on the NVH performance of automobile.In order to study the noise reduction mechanism of the porous material on tire cavity resonance noise.Based on the tire force transmissibility,the consis‐tency between the tire force transmissibility and the cavity noise is verified by experiments.A tire force transmissibility model is es‐tablished and verified.The noise reduction mechanism of porous material on tire cavity resonance noise is studied through the tire force transmissibility model.The results show that the noise reduction effect of porous materials on tire cavity resonance is due to the coupling structural vibration and acoustic noise reduction.The physical and acoustic parameters of porous materials should be comprehensively considered when selecting porous materials.The research results provide an engineering application value for im‐proving vehicle NVH performance and improving low noise tire design.
作者 周海超 李慧云 夏琦 杨建 赵春来 王国林 ZHOU Hai‑chao;LI Hui‑yun;XIA Qi;YANG Jian;ZHAO Chun‑lai;WANG Guo‑lin(School of Automotive and Traffic Engineering,Jiangsu University,Zhenjiang 212013,China;Technology Center of Dongfeng Motor Group CO.LTD.,Wuhan 430000,China)
出处 《振动工程学报》 EI CSCD 北大核心 2022年第5期1147-1156,共10页 Journal of Vibration Engineering
基金 国家自然科学基金资助项目(52072156,51605198) 中国博士后基金资助项目(2020M682269) 江苏省青年科学基金资助项目(KB20160528) 江苏省研究生实践创新计划资助项目(SJCX21_1686)。
关键词 轮胎空腔共振 力传递率 数值仿真 多孔材料 降噪机理 tire cavity resonance force transmissibility numerical simulation porous material noise reduction mechanism
  • 相关文献

参考文献4

二级参考文献30

  • 1Zhu D B, Tudor M J, Beeby S P.2010.Meas. Sci. Technol. 21 022001.
  • 2Tang L H, Yang Y, Soh C K.2010.J. Intell. Mater. Syst. Struct. 21 1867.
  • 3Shahruz S M.2008.J. Comput. Nonlinear Dyn. 3 041001.
  • 4Stanton S, McGehee C, Mann B.2009.Appl. Phys. Lett. 95 174103.
  • 5Ramlan R, Brennan M J, Mace B R, Burrow S G.2012.J. Intell. Mater. Syst. Struct. 23 1423.
  • 6Erturk A, Hoffmann J, Inman D J.2009.Appl. Phys. Lett. 94 254102.
  • 7Tang L H, Yang Y, Soh C K.2012.J. Intell. Mater. Syst. Struct. 23 1433.
  • 8Stanton S C, McGehee C C, Mann B P.2010.Physica D 239 640.
  • 9Fan K Q, Xu C H, Wang W D, Fang Y.2014.Chin. Phys. B 23 084501.
  • 10Erturk A, Inman D J.2011.Piezoelectric Energy Harvesting (Chichester: Wiley), pp171, 345.

共引文献57

同被引文献28

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部