期刊文献+

基于嵌套生成对抗学习的网络嵌入

Network Embedding Based on Nested Generative Adversarial Networks
下载PDF
导出
摘要 当前网络嵌入研究更多关注信息网络结构和结点之间一阶或高阶近似关系,对于网络结点自身属性考虑较少.本文提出一种嵌套的生成对抗网络模型N-GAN(Nesting Generative Adversarial Networks for Network Embed⁃ding),实现了网络结构和节点属性同时嵌入到低维向量,从而最大程度保存原始高维信息网络特征.N-GAN模型设计灵活,具有很好的延伸性和扩张性,并在真实数据上验证了N-GAN的性能及其稳定性,其嵌入的低维表示在不同应用中表现出不错的性能. The current network embedding researches focus more on the information network structure and first-or⁃der or higher-order approximation of nodes,but less on the attributes of network nodes.This paper proposes a nested genera⁃tive adversarial network model N-GAN(Nesting Generative Adversarial Networks for Network Embedding),which embeds the network structure and nodes'attributes into the low-dimensional vector at the same time,so as to preserve the feature of the original high-dimensional information network maximumly.N-GAN model is flexible in design and has good extensibil⁃ity and expansibility.The performance and stability of N-GAN model are verified on real datasets.The embedded low-di⁃mensional representation of N-GAN model shows good performance in different tasks.
作者 沈鹏飞 徐臻 王英 SHEN Peng-fei;XU Zhen;WANG Ying(China Nanhu Academy of Electronics and Information Technology,Jiaxing,Zhejiang 314001,China;College of Computer Science and Technology,Jilin University,Changchun,Jilin 130012,China)
出处 《电子学报》 EI CAS CSCD 北大核心 2022年第9期2155-2163,共9页 Acta Electronica Sinica
基金 国家自然科学基金(No.61872161)。
关键词 数据挖掘 网络嵌入 生成对抗学习 信息网络 data mining network embedding generative adversarial learning information network
  • 相关文献

参考文献5

二级参考文献22

  • 1Ping Liu, Dan He, Kan Liu. Construction of experts network based on co-word analysis[Al. Proceedings of the IEEE Inter- national Conference on Computer Science and Service System [C]. Nanjing, China: IEEE Press, 2011. 2163 - 2166.
  • 2Kai-Hsiang Yang, Chun-Yu Chen, Hahn-Ming Lee et al. EFS: Expert finding system based on Wikipedia link pattern analysis [A]. Proceedings of the IF.EE International Conference on Sys- tems, Man and Cybernetics[ C]. Singapore: IEEE Press, 2008. 631 - 635.
  • 3G Alan Wang, Jian Jiao, Alan Abrahams, et al. ExpertRank: A topic-aware expertfinding algorithm for online knowledge com- munities[ J]. Decision Support Systems, 2013,54 ( 3 ) : 1442 - 1451.
  • 4Clara Higuera, Gonzalo Pajares, Javier Tamames et al. Expert system for clustering prokaryotic species by their metabolic fea- tures[ J]. Expert Systems with Applications, 2013,40( 15 ) :6185 -6194.
  • 5Famoush Farhadi, Elham Hoseini, Sattar Hashemi et al. TeamF'mder:A co-clustering based framework for finding an effective team of experts in social networks [ A ]. Proceedings of the IEEE 12th International Conference on Data Mining Workshops [ C ]. Brussels, Belgium: IEEE Press, 2012. 107 - 114.
  • 6Yi Fang, Luo Si, Aditya P Mathur. Discriminative models of in- tegrating document evidence and document-candidate associa- tions for expert search[ A]. Proceedings of the 33rd internation- al conference on research and development in information re- trieval (SIGIR' 10) [ C ]. Geneva, Switzerland: SIGIR, 2010.683-690.
  • 7Catarina Moreira, Andreas Wichert. Finding academic experts on a multisensor approach using Shannon' s entropy[ J]. Expert Systems with Applications, 2013,40(14) : 5740 - 5754.
  • 8Max O. Lorenz. Methods of measuring the concentration of wealth[ J ]. Publications of the American Statistical Associa- tion, 1905,9(70) :209 - 219.
  • 9Lujun Fang, Alex Fabfikant, Kristen LeFevre. Look Who I Found: Understanding the effects of sharing curated friend groups[ A]. Proceedings of the 3rd Annual ACM Web Science Conference[ C ]. Evanston, USA: ACM, 2012.95 - 104.
  • 10Jun-Ming Xu, Aniruddha Bhargava, Robert Nowak et al. So- cioscope: spatio-temperal signal recovery from social media (extended abstract)[ A] .Proceedings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI) [ C ]. Bei- jing, China, 2013.3096- 3100.

共引文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部