摘要
基于四波混频效应的全光波长转换技术在解决全光信号处理问题中至关重要。波长转换是通过波长转换器将受阻的数据转换到其它空闲波长上进行输出,可解决资源分配不足、通信质量降低的问题。硅基波导及光子晶体光纤等都可用于波长转换,但对于短距离通信,硅基波导更具优势。构建了一种新型MEHPPV硅基光波导,通过有限元法对其进行了色散调控,分析了该波导在最佳结构下的相位失配特性及非线性系数的变化特性。结合该波导的传输损耗、相位失配特性以及非线性系数,建立了基于泵浦简并条件下的四波混频数学模型,分析了不同信号光功率、泵浦光功率以及波导长度下的波长转换效果。结果表明:采用MEHPPV材料作为夹层的slot硅基波导,最大波长转换效率约为16 dB,其转换带宽为400 nm左右,在全光信号处理领域具有广泛的应用前景。
The alloptical wavelength conversion technology based on fourwave mixing is important for alloptical signal processing.Wavelength conversion is the process of converting blocked data to other idle wavelengths for output through a wavelength converter,which can solve the problems of insufficient resource allocation and reduced communication quality.Both siliconbased waveguides and photonic crystal fibers can be used for wavelength conversion;however,for short distance communication,siliconbased waveguides are more advantageous.In this study,a novel MEHPPV(1-methoxy4-(2-ethylhexyloxy)-pphenylenevinylene)siliconbased optical waveguide is constructed,and its dispersion is controlled using the finite element method.The phase mismatch characteristics and nonlinear coefficients of the waveguide under an optimal structure are analyzed.A fourwave mixing mathematical model based on pump degeneracy is established by combining the transmission loss,phase mismatch characteristics,and nonlinear coefficients of the waveguide.The wavelength conversion effects under different signal and pump powers and waveguide lengths are also analyzed.The maximum wavelength conversion efficiency of the slot siliconbased waveguide with the MEHPPV material as a sandwich is approximately 16 dB,and its conversion bandwidth is approximately 400 nm,revealing its wide scope of application in the field of alloptical signal processing.
作者
贺锋涛
靳晨卓
蔡旻辉
李碧丽
杨祎
张建磊
He Fengtao;Jin Chenzhuo;Cai Minhui;Li Bili;Yang Yi;Zhang Jianlei(School of Electronic Engineering,Xi’an University of Posts and Telecommunications,Xi’an 710121,Shaanxi,China;Underwater Information and Control Key Laboratory,China Shipbuilding Group 705 Institute,Xi’an 710077,Shaanxi,China)
出处
《激光与光电子学进展》
CSCD
北大核心
2022年第17期371-376,共6页
Laser & Optoelectronics Progress