摘要
针对浮游植物的总叶绿素a和7种诊断色素(叶绿素b、岩藻黄素、多甲藻素、19-己酰基氧化盐藻黄素、19-丁酰基氧化盐藻黄素、别藻黄素和玉米黄素),基于现场多波段激发荧光光谱数据,通过构建激发荧光光谱特征表征量,利用极限梯度提升(XGBoost)机器学习算法,建立了浮游植物色素浓度的反演模型。验证结果表明,反演模型具有良好的估算精度,其中总叶绿素a的反演模型精度最高(决定系数为0.87,平均绝对相对百分比误差为28.1%,均方根误差为1.168 mg·m^(-3))。将建立的色素反演模型应用于东海典型断面处,成功获取了色素浓度的垂向分布特征。
In this study,inversion models of phytoplankton pigment concentrations are built for the total chlorophyll a and seven diagnostic pigments(i.e.,chlorophyll b,fucoxanthin,peridinin,19′-hexanoyloxyfucoxanthin,19′-butanoyloxyfucoxanthin,alloxanthin,and zeaxanthin).Specifically,given the field measured data of fluorescence excitation spectra,the feature representations of fluorescence excitation spectra are constructed,and the machine learning algorithm eXtreme Gradient Boosting(XGBoost)is employed to build these models.The validation indicates that the inversion models have good estimation accuracy,among which the inversion model of the total chlorophyll a has the highest accuracy(with the determination coefficient of 0.87,the mean absolute percentage error of 28.1%,and the root mean square error of 1.168 mg·m^(−3)).In addition,these pigment inversion models are applied to typical sections of the East China Sea,and vertical distribution features of pigment concentrations are obtained.
作者
王琳淇
王胜强
孙德勇
李俊生
朱元励
许永久
张海龙
Wang Linqi;Wang Shengqiang;Sun Deyong;Li Junsheng;Zhu Yuanli;Xu Yongjiu;Zhang Hailong(School of Marine Sciences,Nanjing University of Information Science and Technology,Nanjing 210044,Jiangsu,China;State Key Laboratory of Remote Sensing Science,Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100101,China;Second Institute of Oceanography,MNR,Hangzhou 310012,Zhejiang,China;School of Fishery,Zhejiang Ocean University,Zhoushan 316022,Zhejiang,China)
出处
《光学学报》
EI
CAS
CSCD
北大核心
2022年第18期207-216,共10页
Acta Optica Sinica
基金
国家自然科学基金(42176181,42176179,42106176)
遥感科学国家重点实验室开放基金(OFSLRSS202103)
江苏省基础研究计划(自然科学基金)(BK20211289,BK20210667)
浙江省基础公益研究计划(LGF21D060001)。
关键词
光谱学
激发荧光光谱
浮游植物色素浓度
反演模型
XGBoost机器学习算法
spectroscopy
fluorescence excitation spectra
phytoplankton pigment concentration
inversion models
XGBoost machine learning algorithm