摘要
为提高智能车辆在路径跟踪控制时的跟踪精度和稳定性,设计了自适应预瞄前馈LQR控制器,并将之应用于路径跟踪控制。首先,基于二自由度车辆误差模型设计了LQR反馈控制器;随后,基于最小二乘拟合法,以车辆平缓进行路径跟踪为目标,规划虚拟跟踪路径,并根据虚拟跟踪路径曲率、车辆车速和虚拟路径相对航向偏差设计了自适应预瞄算法;以此建立了自适应预瞄前馈LQR控制器。最后,通过Carsim-Simulink联合仿真试验测试控制器性能。结果表明,在双移线测试工况中,设计的控制器具有较好的路径跟踪效果。
In order to improve the tracking accuracy and stability of intelligent vehicle in path tracking control,this paper designed an adaptive preview feed forward LQR controller based on particle swarm multi-objective optimization algorithm and applied it to path tracking control.Firstly,the LQR feedback controller was designed based on the 2-DOF vehicle error model.Then,the virtual tracking path was planned by using the least square fitting method,with the vehicle’s gentle path tracking as the target.Additionally,an adaptive preview algorithm was constructed according to the curvature of the virtual tracking path,vehicle speed and relative heading deviation of the virtual path.As a result,an adaptive preview feed forward LQR controller was established.Finally,the performance of the controller was tested by using the Carsim-Simulink co-simulation test.The results show that the designed controller has a good path tracking effect in the double line moving condition.
作者
杨腾盛
郭世永
YANG Tengsheng;GUO Shiyong(School of Mechanical&Automotive Engineering,Qingdao University of Technology,Qingdao 266525,China)
出处
《青岛理工大学学报》
CAS
2022年第5期136-142,共7页
Journal of Qingdao University of Technology
基金
国家自然科学基金面上项目(51678320)。
关键词
智能车辆
路径跟踪
最小二乘拟合
自适应预瞄算法
intelligent vehicle
path tracking
least squares fitting
adaptive preview algorithm