期刊文献+

改进区域增长和RANSAC由粗到精的建筑物分割方法

Improved Region Growing and RANSAC from Coarse to Fine Building Segmentation Method
下载PDF
导出
摘要 针对目前机载LiDAR建筑物屋顶面分割精度不高问题,提出了一种结合改进区域增长和RANSAC由粗到精的建筑物分割方法。该方法首先基于LRSCPK计算点云法向量,然后利用最小曲率区域增长算法进行屋顶面粗分割,最后利用RANSAC进行小平面的分割和屋顶面的优化。使用5栋不同复杂程度的建筑物数据验证本文方法,同时与其他两种算法进行比较,结果表明,所提出的方法能够有效地分割不同程度的复杂建筑物,且在小面积的屋顶面有着较好地分割效果。以屋顶面为评价单元计算建筑物分割完整性、正确性、质量的平均值,结果分别为:100%、94.6%、94.6%。 Aiming at the problem of low segmentation accuracy of airborne LiDAR building roof,this paper proposes a building segmentation method combining improved region growing and RANSAC from coarse to fine.Firstly,the method calculates the point cloud normal vector based on LRSCPK.Then,the minimum curvature region growing algoRithm is used for rough segmentation of the roof surface.Finally,RANSAC is used for the segmentation of the facet and the optimization of the roof surface.The proposed method is verified by using the data of five buildings with different levels of complexity,and compared with the other two algorithms,the results show that the proposed method can effectively segment complex buildings to different degrees,and has a good segmentation effect on small roofs.We take the roof surface as the evaluation unit to calculate the average values of building segmentation Comp,Corr,and Quality,and the results are 100%,94.6%,and 94.6%,respectively.
作者 刘建兴 LIU Jianxing(Jiangxi Nuclear Industry Geological Survey,330038,Nanchang,PRC)
出处 《江西科学》 2022年第5期909-913,975,共6页 Jiangxi Science
关键词 LRSCPK 最小曲率区域增长 RANSAC 机载LIDAR LRSCPK minimum curvature region growing RANSAC airborne LiDAR
  • 相关文献

参考文献9

二级参考文献58

  • 1史文中,李必军,李清泉.基于投影点密度的车载激光扫描距离图像分割方法[J].测绘学报,2005,34(2):95-100. 被引量:90
  • 2陈付幸,王润生.基于预检验的快速随机抽样一致性算法[J].软件学报,2005,16(8):1431-1437. 被引量:106
  • 3汤亚波,王希强,徐守时.一种基于广义Hough变换的遥感图像船舶横波自动检测与速度估计方法[J].国防科技大学学报,2006,28(1):43-47. 被引量:3
  • 4Rottensteiner F,Briese C.Automatic Generation of Building Models from Lidar Data and the Integration of Aerial Images Dresden[C]//International Archives of Photogrammetry and Remote Sensing,2003.
  • 5Forlani G,Nardinocchi C,Scaioni M,et al.Complete Classification of Raw LIDAR Data and 3D Reconstruction of Buildings[J].Pattern Analysis & Applications,2006,8(4):257-274.
  • 6Yoon J S,MyungSagong J S,Lee K S.Feature Extraction of a Concrete Tunnel Line from 3D Laser Scanning Data[J].NDT&E International,2009,42:97-105.
  • 7Wang C,Glenn N F.Integrating LiDAR Intensity and Elevation Data for Terrain Characterization in a Forested Area[J].IEEE Geoscience and Remote Sensing Letters,2009,6(3):463-466.
  • 8Krishnapuram R,Casasent D.Determination of Three-dimensional Object Location and Orientation from Range Images[J].IEEE Trans.on Pattern Analysis and Machine Intelligence,1989,11(11):1158-1167.
  • 9Vosselman G,Gorte B G,Sithole G,et al.Recognising Structure in Laser Scanner Point Cloud,in International Archives of Photogrammetry[C]//Remote Sensing and Spatial Information Sciences,2004.
  • 10Khoshelham K.Extending Generalized Hough Transform to Detect 3D Objects in LASER Range Data[C]//ISPRS Workshop on Laser Scanning and SilviLaser,2007.

共引文献123

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部