摘要
研究了相对于一个给定元素d的(b,c)-逆的性质.在更一般的情形下,定义了两类新的广义逆,即左和右(b_(d),c_(d))-逆.证明了右(b_(d),c_(d))-逆是(b,c)-逆的一个新子类,并通过例子说明(b,c)-可逆元未必是右(b_(d),c_(d))-可逆的.研究了右(b_(d),c_(d))-逆上的各种性质,包括Jacobson引理、Cline公式和缠绕性质等.作为应用,利用右(b_(d),c_(d))-逆对abelian环给出了新刻画.
The relative properties of(b,c)-inverses are studied with respect to a given element d in a ring R.The new concepts of left and right(b_(d),c_(d))-inverses are introduced in a more general setting.It’s shown that the class of right(b_(d),c_(d))-inverses is a new subclass of(b,c)-inverses,and an example is given to show that(b,c)-invertible elements need not be right(b_(d),c_(d))-invertible.Various properties including Jacobson’s lemma,Cline’s formula and the intertwining property for right (b_(d),c_(d))-invertible elements are studied.As applications,a new characterization of abelian rings from the point of view of right(b_(d),c_(d))-inverses is given.
作者
焦珺
赵良
Jiao Jun;Zhao Liang(School of Mathematies and Phyics Anhui University of Technology,Manshan 243032,China)
出处
《南开大学学报(自然科学版)》
CAS
CSCD
北大核心
2022年第4期1-9,共9页
Acta Scientiarum Naturalium Universitatis Nankaiensis
基金
Supported by the National Science Foundation of China (12161049)
the Natural Science Foundation of Jiangsu Province of China (BK20181406)。