期刊文献+

工作流网频繁子网挖掘研究进展

Research progress of frequent subnets mining on workflow nets
下载PDF
导出
摘要 本文总结了工作流网频繁子网挖掘的主流研究方向,包括从一维的日志进程中构造工作流网及其子网和从二维工作流网中挖掘其频繁子网结构,总结了其中的代表性方法及其优缺点。工作流网具有复杂、异构拓扑结构和完备性语义的特性,本文详细分析了将频繁模式挖掘(FPM)算法直接用于工作流网频繁子网挖掘存在的问题及缺陷。并给出了工作流网频繁子网挖掘的典型应用,包括异常检测、跨组织变体分析等。最后讨论了工作流网频繁子网挖掘中的研究难点和未来研究趋势。 This paper summaries two main directions of frequent subnets mining on workflow nets, including constructing workflow nets and subnets from 1-dimention log processes data, and mining sub-structures from 2-dimention workflow nets. The advantages and disadvantages of these approaches are discussed. Due to the complex networked data structures and complete semantics that are contained in workflow nets, the issues of applying frequent pattern mining algorithms on workflow net mining are thoroughly analyzed. Furthermore, some typical applications of mining frequent subnets on workflow nets are presented, including anomalous pattern detection, cross-organizational variability analysis, and so on. Finally, some challenges and potential future directions concerning frequent subnets mining on workflow net are discussed.
作者 张书涵 费超群 黄锡昆 李阳阳 ZHANG Shuhan;FEI Chaoqun;HUANG Xikun;LI Yangyang(Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences,Institute of Computing Technology,Beijing 100190;Academy of Mathematics and Systems Science Key Laboratory of MADIS,Chinese Academy of Sciences,Beijing 100190;University of Chinese Academy of Sciences,Beijing 100049)
出处 《高技术通讯》 CAS 2022年第8期811-824,共14页 Chinese High Technology Letters
基金 国家重点研发计划(2016YFB1000902) 国家自然科学基金(61232015,21472412,61621003) 中国博士后科学基金(2020TQ0341)资助项目。
关键词 频繁模式挖掘(FPM) 工作流网 子网挖掘 PETRI网 进程挖掘 frequent pattern mining(FPM) workflow net subnet mining Petri net process mining
  • 相关文献

参考文献5

二级参考文献57

  • 1宋世杰,胡华平,周嘉伟,金士尧.一种基于大项集重用的序列模式挖掘算法[J].计算机研究与发展,2006,43(1):68-74. 被引量:10
  • 2黄星琪,王立福,赵文,张世琨,袁崇义.A Workflow Process Mining Algorithm Based on Synchro-Net[J].Journal of Computer Science & Technology,2006,21(1):66-71. 被引量:8
  • 3潘海兰.一种建模的新技术:流程挖掘[J].上海第二工业大学学报,2006,23(2):127-132. 被引量:5
  • 4李嘉菲,刘大有,于万钧.一种能发现重复任务的过程挖掘算法[J].吉林大学学报(工学版),2007,37(1):106-110. 被引量:5
  • 5Srikant R,Agrawal R.Mining sequential patterns:Generalizations and performance improvements.In:Proceedings of the 5th International Conference on Extending Database Technology.Heidelberg,Germany:Springer,1996.3-17.
  • 6Mannila H,Toivonen H,Verkamo A I.Discovery of frequent episodes in sequences.In:Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,1995.10-21.
  • 7Garofalakis M,Rastogi R,Shim K.Spirit:Sequential pattern mining with regular expression constraints.In:Proceedings of the 25th International Conference on Very Large Data Bases.San Francisco,USA:Morgan Kaufmann,1999.223-234.
  • 8Zaki M.Spade:An efficient algorithm for mining frequent sequences.Machine Learning,2001,41(2):31-60.
  • 9Han J,Pei J.Freespan:frequent pattern-projected sequential pattern mining.In:Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2000.355-359.
  • 10Pei J,Han J,Mortazavi-Asl B,et al.PrefixSpan:Mining sequential patterns efficiently by prefix-projected pattern growth.In:Proceedings of 2001 International Conference on Data Engineering.Heidelberg,Germany:Springer,2001.215-224.

共引文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部