期刊文献+

轻量级高分辨率人体姿态估计研究 被引量:3

Lightweight and High-Resolution Human Pose Estimation Method
原文传递
导出
摘要 人体姿态估计通常使用高分辨率表示的方法来实现关键点的检测,但网络参数量较大,运算较为复杂。基于此,提出了一种轻量级高分辨率人体姿态估计算法。首先,使用稠密连接网络(DenseNet)并进行轻量化改进,提出密集连接层,使得各层之间连接更加紧密,从而降低网络的运算参数,优化网络的运算速度;其次,在降低参数且精度保持不变的情况下,在多尺度融合阶段使用上采样和反卷积模块结合的融合方式,使得输出的特征信息更加丰富,检测结果更加准确;最后,利用COCO 2017验证数据集及MPII数据集进行验证。实验结果表明,在保证准确率的情况下与其他人体姿态估计算法相比,所提算法的平均精度为74.8%,运算参数减少了63.8%,网络运算复杂度缩小了8.5%,同时也到达了实时性的效果。 For human pose estimation,a highscore representation method is usually adopted for detecting key points;however,this detection is difficult to achieve because of numerous network parameters and complicated calculations.In this study,to realize a closer connection between layers and achieve an enhanced lightweight nature,the densely connected network(DenseNet)is employed and densely connected layers are proposed.The network calculation parameters are reduced while the detection accuracy is maintained,and the network computing speed is optimized.Second,a fusion method that combines upsampling and deconvolution modules in the multiscale fusion stage is proposed,facilitating more abundant output feature information and more accurate detection results more accurate.Finally,the COCO 2017 and MPII datasets are used for validating the proposed method.Experimental results show that compared with other human pose estimation algorithms,the proposed method achieves an average network accuracy of 74.8%,reduces the number of operating parameters by 63.8%,and decreases the network calculation complexity by 8.5%while ensuring the accuracy of realtime effects.
作者 渠涵冰 贾振堂 Qu Hanbing;Jia Zhentang(College of Electronics and Information Engineering,Shanghai University of Electric Power,Shanghai 200090,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2022年第18期119-126,共8页 Laser & Optoelectronics Progress
基金 国家自然科学基金青年科学基金(61401269)。
关键词 图像处理 人体姿态估计 高分辨率表示 多尺度融合 轻量化 改进稠密连接网络 image processing human body pose estimation highresolution representation multiscale fusion lightweight improved densely connected network
  • 相关文献

参考文献5

二级参考文献120

  • 1[25]Kohle M, Merkl D, Kastner J. Clinical gait analysis by neural networks: Issues and experiences. In: Proc IEEE Symposium on Computer-Based Medical Systems, Maribor, Slovenia, 1997. 138-143
  • 2[26]Meyer D, Denzler J, Niemann H. Model based extraction of articulated objects in image sequences for gait analysis. In: Proc IEEE International Conference on Image Processing, Santa Barbara, California 1997. 78-81
  • 3[27]McKenna S et al. Tracking groups of people. Computer Vision and Image Understanding, 2000, 80(1):42-56
  • 4[28]Karmann K, Brandt A. Moving object recognition using an adaptive background memory. In: Cappellini V ed. Time-varying Image Processing and Moving Object Recognition. 2. Elsevier, Amsterdam, The Netherlands, 1990
  • 5[29]Kilger M. A shadow handler in a video-based real-time traffic monitoring system. In: Proc IEEE Workshop on Applications of Computer Vision, Palm Springs, CA, 1992.1060-1066
  • 6[30]Stauffer C, Grimson W. Adaptive background mixture models for real-time tracking. In: Proc IEEE Conference on Computer Vision and Pattern Recognition, Fort Collins, Colorado, 1999, 2:246-252
  • 7[31]Wren C, Azarbayejani A, Darrell T, Pentland A. Pfinder: Real-time tracking of the human body. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19(7):780-785
  • 8[32]Arseneau S, Cooperstock J. Real-time image segmentation for action recognition. In: Proc IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, Victoria, Canada, 1999. 86-89
  • 9[33]Sun H, Feng T, Tan T. Robust extraction of moving objects from image sequences. In: Proc the Fourth Asian Conference on Computer Vision, Taiwan, 2000.961-964
  • 10[34]Lipton A, Fujiyoshi H, Patil R. Moving target classification and tracking from real-time video. In: Proc IEEE Workshop on Applications of Computer Vision, Princeton, NJ, 1998. 8-14

共引文献350

同被引文献13

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部