期刊文献+

NSMD和LMSST相结合的变转速滚动轴承故障诊断方法 被引量:2

Fault Diagnosis Method of Variable Speed Rolling Bearings Combined with NSMD and LMSST
下载PDF
导出
摘要 为了能够准确反映变转速工况下滚动轴承的时变故障特征,本文提出了一种基于非线性稀疏模态分解(NSMD)和局部最大值同步压缩变换(LMSST)的故障诊断方法。首先利用NSMD对含噪振动信号进行分解,基于各分量的频谱最大相关性进行有用分量的选择;然后对其进行LMSST分析,从时频平面中提取时变故障特征,从而实现变转速下轴承故障诊断。 In order to accurately reflect the time-varying fault characteristics of rolling bearings under variable speed conditions, a new fault diagnosis method based on Nonlinear Sparse Mode Decomposition(NSMD) and Local Maximum Synchrosqueezing Transform(LMSST) is proposed in this paper. Firstly, the noisy vibration signal of rolling bearings is decomposed by NSMD, and the useful components are selected based on the maximum spectral correlation of each component;Then these useful components are treated again though LMSST analysis, and the time-varying fault features are extracted from the time-frequency plane, so as to realize the bearing fault diagnosis under variable speed conditions.
作者 尤光辉 吕勇 易灿灿 余肇鸿 YOU Guanghui;LYU Yong;YI Cancan;YU Zhaohong(Key Laboratory of Metallurgical Equipment and Control Technology,Ministry of Education,Wuhan University of Science and Technology,Wuhan 430081,China;Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering,Wuhan University of Science and Technology,Wuhan 430081,China;Zhejiang Institute of Mechanical&Electrical Engineering,Hangzhou 310053,China)
出处 《机械科学与技术》 CSCD 北大核心 2022年第10期1598-1607,共10页 Mechanical Science and Technology for Aerospace Engineering
基金 国家自然科学基金面上项目(51875416) 国家自然科学基金项目(51805382) 湖北省自然科学基金创新群体项目(2020CFA033) 浙江省教育厅一般科研项目(Y202148122)。
关键词 非线性稀疏模态分解 局部最大值同步压缩变换 滚动轴承 故障诊断 nonlinear sparse mode decomposition local maximum synchrosqueezing transform rolling bearings fault diagnosis
  • 相关文献

参考文献9

二级参考文献69

  • 1张亢,程军圣,杨宇.基于局部均值分解与形态学分形维数的滚动轴承故障诊断方法[J].振动与冲击,2013,32(9):90-94. 被引量:19
  • 2高小梅,冯云,冯兴杰.增量式K-Medoids聚类算法[J].计算机工程,2005,31(B07):181-183. 被引量:9
  • 3王晶,徐光华,张四聪,朱君明.基于形态学滤波器的棘波提取技术[J].中国生物医学工程学报,2007,26(1):69-73. 被引量:6
  • 4康海英,栾军英,郑海起,秘晓元.基于阶次跟踪和HHT边际谱的轴承故障诊断研究[J].振动与冲击,2007,26(6):1-3. 被引量:14
  • 5Smith J S. The local mean decomposition and its application to EEG perception data [ J ]. Journal of the Royal Society Interface,2005,2 (5) :443 - 454.
  • 6Wang Y X, He Z J, Zi Y Y. A comparative study on the local mean decomposition and empirical mode decomposition and their applications to rotating machinery health diagnosis [ J ]. Journal of Vibration and Acoustics-Transactions of the ASME, 2010,132(2) :021010.
  • 7Chen B J, He Z J, Chen X F, et al. A demodulating approach based on local mean decomposition and its applications in mechanical fault diagnosis [ J ]. Measurement Science and Technology,2011,22 (5) : 1 - 13.
  • 8Wang Y X, He Z J, Zi Y Y. A demodulation method based on improved local mean decomposition and its application in rub- impact fault diagnosis [ J ]. Measurement Science and Technology, 2009, 20(2) :1 - 10.
  • 9Tandon N, Choudhury A. A review of vibration and acoustic measurement methods for the detection of defects in rolling element bearings. Tribol lnt, 1999, 32(8): 469.
  • 10McFadden P D, Smith J D. Model for the vibration produced by a single point defect in a rolling element bearing. J Sound Vib, 1984, 96(1): 69.

共引文献142

同被引文献15

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部