摘要
为了能够准确反映变转速工况下滚动轴承的时变故障特征,本文提出了一种基于非线性稀疏模态分解(NSMD)和局部最大值同步压缩变换(LMSST)的故障诊断方法。首先利用NSMD对含噪振动信号进行分解,基于各分量的频谱最大相关性进行有用分量的选择;然后对其进行LMSST分析,从时频平面中提取时变故障特征,从而实现变转速下轴承故障诊断。
In order to accurately reflect the time-varying fault characteristics of rolling bearings under variable speed conditions, a new fault diagnosis method based on Nonlinear Sparse Mode Decomposition(NSMD) and Local Maximum Synchrosqueezing Transform(LMSST) is proposed in this paper. Firstly, the noisy vibration signal of rolling bearings is decomposed by NSMD, and the useful components are selected based on the maximum spectral correlation of each component;Then these useful components are treated again though LMSST analysis, and the time-varying fault features are extracted from the time-frequency plane, so as to realize the bearing fault diagnosis under variable speed conditions.
作者
尤光辉
吕勇
易灿灿
余肇鸿
YOU Guanghui;LYU Yong;YI Cancan;YU Zhaohong(Key Laboratory of Metallurgical Equipment and Control Technology,Ministry of Education,Wuhan University of Science and Technology,Wuhan 430081,China;Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering,Wuhan University of Science and Technology,Wuhan 430081,China;Zhejiang Institute of Mechanical&Electrical Engineering,Hangzhou 310053,China)
出处
《机械科学与技术》
CSCD
北大核心
2022年第10期1598-1607,共10页
Mechanical Science and Technology for Aerospace Engineering
基金
国家自然科学基金面上项目(51875416)
国家自然科学基金项目(51805382)
湖北省自然科学基金创新群体项目(2020CFA033)
浙江省教育厅一般科研项目(Y202148122)。
关键词
非线性稀疏模态分解
局部最大值同步压缩变换
滚动轴承
故障诊断
nonlinear sparse mode decomposition
local maximum synchrosqueezing transform
rolling bearings
fault diagnosis