摘要
本文研究了预设时间下的分布式优化和纳什均衡点求解问题.假设每个智能体只能通过局部的信息更新自身的状态,设计了一类预设时间下的分布式协议.该协议可以在任意预设的时间内实现收敛,并且不需要依赖智能体的初始状态和系统参数.当目标函数是强凸函数时,通过选取一个适当的Lyapunov函数,利用代数图论和凸分析理论等工具严格的证明了多智能体系统在预设时间下能够收敛到优化问题的最优解和非合作博弈问题的纳什均衡点.最后,通过仿真算例进一步验证了本文所设计协议的有效性.
In this paper,prescribed-time distributed optimization and Nash equilibrium seeking problems are investigated.Assuming that each agent can only have access to its local information,we design a distributed protocol within the prescribed-time.The protocol can achieve convergence in any prescribed-time,which renders the convergence time fully independent of the initial conditions and any other parameters.When the objective function is strongly convex,selecting an appropriate Lyapunov function,by utilizing algebraic graph theory and convex analysis theory strictly proves that the multi-agent can converge to the optimal solution of optimization problem and the Nash equilibrium of noncooperative game problem within the prescribed-time.Finally,simulation examples verify the effectiveness of the proposed protocols.
作者
张苗苗
叶茂娇
郑元世
ZHANG Miao-miao;YE Mao-jiao;ZHENG Yuan-shi(School of Mechanical and Electrical Engineering,Xidian University,Xi’an Shaanxi 710071,China;School of Automaton,Nanjing University of Science and Technology,Nanjing Jiangsu 210094,China)
出处
《控制理论与应用》
EI
CAS
CSCD
北大核心
2022年第8期1397-1406,共10页
Control Theory & Applications
基金
国家自然科学基金项目(61773303,62173181)
中央高校基本科研业务费(30920032203)
陕西省自然科学基础研究计划项目(2022JC-46)资助.
关键词
预设时间
分布式
优化
纳什均衡
非合作博弈
prescribed-time
distributed
optimization
Nash equilibrium solution
noncooperative game