摘要
鉴于传统的数据竞争动态检测方法对因果关系的建模不够准确,且将互斥关系处理为因果约束,导致多种误报或漏报,对业务流程执行语言(BPEL)活动间的因果关系进行精细划分,提出一种基于新型逻辑时钟的因果关系精细化识别方法,并联合向量时钟和全局互斥锁对BPEL程序中活动间的互斥关系进行准确处理,由此提出一种更为精细的BPEL程序数据竞争动态检测和预测方法,该方法在一定程度上既能保证较低的数据竞争误报率,又能降低数据竞争的漏报率,但会牺牲更多空间和时间。最后通过BPEL流程实例验证了所提方法的优越性。
Traditional dynamic data race detection methods model activity causal relationship in a less precise way. Furthermore, mutual exclusion relationship is causal constraints that lead to various misreports or underreporting.To address this problem, a finer classification of causal relationships among Business Process Execution Language(BPEL) activities was proposed. A new logic clock-based method for finer identification of causal relationships was developed. Meanwhile, an accurate processing of mutually exclusive relationships among activities in BPEL programs was proposed by combining vector clocks and global mutex locks together. As a result, a more refined method for dynamic detection and prediction of data races in BPEL programs was proposed, which was able to ensure both a lower rate of data race false positives and a lower rate of data race negatives to a certain extent, but at the expense of more space and time. The advantages of the proposed method were verified in conjunction with a BPEL process example.
作者
鲁伟娜
鲁法明
包云霞
曾庆田
段华
LU Weina;LU Faming;BAO Yunxia;ZENG Qingtian;DUAN Hua(College of Computer Science and Engineering,Shandong University of Science and Technology,Qingdao 266590,China;College of Mathematics and System Science,Shandong University of Science and Technology,Qingdao 266590,China)
出处
《计算机集成制造系统》
EI
CSCD
北大核心
2022年第10期3064-3080,共17页
Computer Integrated Manufacturing Systems
基金
国家自然科学基金资助项目(61602279)
山东省泰山学者工程专项基金资助项目(ts20190936)
山东省高等学校青创科技支持计划资助项目(2019KJN024)
国家海洋局海洋遥测工程技术研究中心开放基金资助项目(2018002)
山东科技大学领军人才与优秀科研创新团队资助项目(2015TDJH102)。
关键词
数据竞争
并发缺陷
WEB服务组合
业务过程管理
逻辑时钟
data race
concurrency defect
Web service composition
business process management
logic clock