期刊文献+

拦截大机动目标的有限时间收敛制导律

Finite Time Convergent Guidance Law for Intercepting Highly Maneuvering Targets
下载PDF
导出
摘要 针对大机动目标的拦截问题,基于积分滑模控制理论提出了有限时间收敛的积分滑模制导律。采用参数自适应调节的径向基函数神经网络扰动观测器对目标机动引起的制导系统扰动进行估计,为了进一步提高估计精度,利用自适应律消除神经网络观测器的的估计误差。根据李雅普诺夫稳定性理论证明了制导律的稳定性和有限时间收敛性。通过数值仿真说明所提制导律无论是在脱靶量方面还是在弹目视线角的控制精度上都具有优异的性能。 For intercepting highly maneuvering targets,an integral sliding mode guidance law with finite time convergence is proposed based on the integral sliding mode control theory.A radial basis function(RBF)neural network disturbance observer with adaptive parameter adjustment is used to estimate the disturbance of the guidance system caused by the target maneuver.In order to further improve the estimation accuracy,the adaptive law is used to eliminate the estimation error of the neural network observer.According to Lyapunov stability theory,the stability and finite time convergence of the guidance law are proved.The numerical simulation shows that the guidance law proposed in this paper has excellent performance both in miss distance and in the control accuracy of missile and target line of sight angle.
作者 吴刚 张科 WU Gang;ZHANG Ke(Northwestern Polytechnical University,School of Astronautics,Shaanxi Xi’an 710072,China;Jiangnan Design&Research Institute of Machinery&Electricity,Guizhou Guiyang 550009,China)
出处 《现代防御技术》 北大核心 2022年第5期43-51,共9页 Modern Defence Technology
关键词 制导律 积分滑模 大机动目标 径向基函数神经网络 扰动观测器 有限时间收敛 guidance law integral sliding mode highly maneuvering target radial basis function(RBF)neural network disturbance observer finite time convergence
  • 相关文献

参考文献5

二级参考文献73

  • 1端军红,高晓光.动能拦截器逆轨拦截时攻击区的一种估算方法[J].西北工业大学学报,2009,27(6):838-845. 被引量:3
  • 2徐鸣,吴庆宪,姜长生.空空导弹攻击机动目标的三维最优制导律研究[J].航空兵器,2005,12(6):7-12. 被引量:11
  • 3Rogers S. Missile guidance comparison. Proceeding of A1AA guidance, navigation, and control conference; 2004 Aug 16-19; Rhode Island. Reston: AIAA; 2004.
  • 4Zhou D, Sun S, Tea KL. Guidance laws with finite time convergence. J Guid Control Dyn 2009;32(6):1838-46.
  • 5Yang CD, Chen HY. Nonlinear H∞ robust guidance law for homing missiles. J Guid Control Dyn 1998;21(6):882-90.
  • 6Zhou D, Mu CD, Shen TL. Robust guidance law with L2 gain performance. Trans Jpn Soc Aeronaut Space Sci 2001;44(144): 82-8.
  • 7Oshman Y, Arad D. Differential-game-based guidance law using target orientation observations. IEEE Trans Aerosp Electron Syst 2006;42(1):316-26.
  • 8Harl N, Balakrishnan SN. Impact time and angle guidance with sliding mode control, 1EEE Trans Control Syst Technol 2012; 20(6): 1436-49.
  • 9Yamasaki T, Balakrishnan SN, Takano H, Yamaguchi I. Second order sliding mode-based intercept guidance with uncertainty and disturbance compensation. Proceeding of AIAA guidance, naviga- tion, and control conference; 2013 Aug 19-22; Boston, MA. Reston: AIAA: 2013.
  • 10Shafiei MH, Binazadeh T. Application of partial sliding mode in guidance problem. 1SA Trans 2013;52(2): 192-7.

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部