摘要
针对大机动目标的拦截问题,基于积分滑模控制理论提出了有限时间收敛的积分滑模制导律。采用参数自适应调节的径向基函数神经网络扰动观测器对目标机动引起的制导系统扰动进行估计,为了进一步提高估计精度,利用自适应律消除神经网络观测器的的估计误差。根据李雅普诺夫稳定性理论证明了制导律的稳定性和有限时间收敛性。通过数值仿真说明所提制导律无论是在脱靶量方面还是在弹目视线角的控制精度上都具有优异的性能。
For intercepting highly maneuvering targets,an integral sliding mode guidance law with finite time convergence is proposed based on the integral sliding mode control theory.A radial basis function(RBF)neural network disturbance observer with adaptive parameter adjustment is used to estimate the disturbance of the guidance system caused by the target maneuver.In order to further improve the estimation accuracy,the adaptive law is used to eliminate the estimation error of the neural network observer.According to Lyapunov stability theory,the stability and finite time convergence of the guidance law are proved.The numerical simulation shows that the guidance law proposed in this paper has excellent performance both in miss distance and in the control accuracy of missile and target line of sight angle.
作者
吴刚
张科
WU Gang;ZHANG Ke(Northwestern Polytechnical University,School of Astronautics,Shaanxi Xi’an 710072,China;Jiangnan Design&Research Institute of Machinery&Electricity,Guizhou Guiyang 550009,China)
出处
《现代防御技术》
北大核心
2022年第5期43-51,共9页
Modern Defence Technology
关键词
制导律
积分滑模
大机动目标
径向基函数神经网络
扰动观测器
有限时间收敛
guidance law
integral sliding mode
highly maneuvering target
radial basis function(RBF)neural network
disturbance observer
finite time convergence