期刊文献+

多尺度特征融合的Anchor-Free轻量化舰船要害部位检测算法 被引量:7

Warship’s vital parts detection algorithm based on lightweight Anchor-Free network with multi-scale feature fusion
下载PDF
导出
摘要 反舰导弹对舰船要害部位的精确打击能力是精确制导武器的关键技术之一。针对反舰导弹导引头对舰船要害部位检测精度低、特征提取能力不足,预测框的处理降低检测速度等问题,提出了一种多尺度特征融合的Anchor-Free轻量化舰船要害部位检测算法。由于舰船要害部位检测数据具有多尺度、多角度特性,引入多尺度特征融合模块,综合利用不同感受野的检测信息,优化特征提取;利用高效轻量化注意力机制改进Hourglass结构中的跨层连接,提升检测精度,降低算法总参数量;使用迁移学习有效提升算法收敛效果。在建立的舰船要害部位检测数据集和公开的PASCAL VOC数据集进行实验,检测准确率分别提升了4.41%和5.57%,分析算法参数与运算量,设计了模块消融实验,论证了所提算法的有效性。 One of the key technologies of precision-guidance weapons is the anti-ship missile’s ability to strike vital parts of a warship with pinpoint accuracy.Aiming at the problems of low detection accuracy,insu-fficient ability in feature extraction and the processing of the generated-anchors reduces the detection speed in anti-ship missile seekers,a warship’s vital parts detection algorithm based on a lightweight Anchor-Free net-work with multi-scale feature fusion is proposed.Due to the multi-scale and multi-angle characteristics of the vital parts detection data,the multi-scale feature fusion module is introduced to optimize the feature extraction by comprehensively using the detection information of different receptive fields.To boost the detection accuracy and reduce the total parameters of the algorithm,the skip connections in Hourglass are enhanced by using the efficient and lightweight attention mechanism.The transfer-learning is used to improve the convergence of this algorithm effectively.Experiments were carried out on the dataset of the warship’s vital parts and the PASCAL VOC.Experimental results show the mAP is increased by 4.41%and 5.57%respectively.The algorithm’s parameters and the computation are analyzed.The module ablation experiments are designed to demonstrate the effectiveness of the algorithm.
作者 李晨瑄 顾佼佼 王磊 钱坤 冯泽钦 LI Chenxuan;GU Jiaojiao;WANG Lei;QIAN Kun;FENG Zeqin(Coast Guard Academy,Naval Aviation University,Yantai 264001,China;The 91900th Unit of the PLA,Qingdao 266041,China)
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2022年第10期2006-2019,共14页 Journal of Beijing University of Aeronautics and Astronautics
基金 装备预研领域基金(6140247030202)。
关键词 目标检测 Anchor-Free算法 注意力机制 特征融合 CenterNet 反舰导弹 target detection Anchor-Free algorithm attention mechanism feature fusion CenterNet anti-ship missile
  • 相关文献

参考文献7

二级参考文献13

共引文献233

同被引文献47

引证文献7

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部