期刊文献+

有序化析氧电极的制备与性能

Preparation and performance of ordered oxygen evolution electrode
下载PDF
导出
摘要 作为质子交换膜(PEM)电解水制氢技术的核心部件,析氧电极决定了水电解池的能耗、效率和使用寿命。采用阳极极化法制备TiO_(x)纳米管阵列(A-Ti),再通过热解法负载IrO_(2)获得有序化析氧电极(IrO_(2)/A-Ti)。在水电解池中测试评估时,IrO_(2)/A-Ti电极可实现更高的电流密度,约3.5 A/cm^(2);而未处理电极(IrO_(2)/N-Ti)在电流密度为0.8 A/cm^(2)时,即出现明显的浓差极化。IrO_(2)/A-Ti电极较好的电化学性能,可归因于电催化多活性界面的反应动力学更快,活性组分的分散性更好。 As the core component of proton exchange membrane(PEM)water electrolysis hydrogen production technique,the oxygen evolution electrode determined the energy consumption,efficiency and service life of the water electrolysis cell.TiO_(x) nanotube arrays(A-Ti)were prepared by anodic polarization method,the ordered oxygen evolution electrode(IrO_(2)/A-Ti)was obtained by loading IrO_(2) by thermal decomposition.When tested and evaluated in the water electrolysis cell,the IrO_(2)/A-Ti electrodes could achieve a much higher current density of around 3.5 A/cm^(2),while the untreated electrode(IrO_(2)/N-Ti)showed obvious concentration polarization when the current density was 0.8 A/cm^(2).The well electrochemical performance of IrO_(2)/A-Ti electrode could be attributed to the catalytic multi-interfaces with a faster reaction kinetics and better dispersion of the active components.
作者 刘高阳 侯法国 彭善龙 王新东 LIU Gao-yang;HOU Fa-guo;PENG Shan-long;WANG Xin-dong(School of Metallurgical and Ecological Engineering,University of Science and Technology Beijing,Beijing 100083,China;State Key Laboratory of Advanced Metallurgy,University of Science and Technology Beijing,Beijing 100083,China)
出处 《电池》 CAS 北大核心 2022年第5期484-487,共4页 Battery Bimonthly
基金 国家自然科学基金(51070417) 中央基本业务费(FRF-TP-20-010A1)。
关键词 质子交换膜(PEM)电解水制氢 析氧反应 有序化电极 proton exchange membrane(PEM)water electrolysis hydrogen production oxygen evolution reaction ordered electrode
  • 相关文献

参考文献2

二级参考文献28

  • 1赵培,木士春,潘牧,袁润章.PEMFC组件CCM制备方法的评述[J].电池,2005,35(6):480-482. 被引量:7
  • 2程年才,木士春,潘牧,袁润章.胶体法制备PEMFC催化剂的评述[J].电池,2007,37(3):241-243. 被引量:5
  • 3Xu J Y,Wang M,Liu G Y,et al. The physical-chemical properties and electrocatalytic performance of iridium oxide in oxygen evolu- tion [ J ]. Electrochim Acta,2011,56 ( 27 ) : 10 223 - 10 230.
  • 4Polonsky J, Petrushina I M, Christensen E,et al. Tantalum carbide as a novel support material for anode electrocatalysts in polymer electrolyte membrane water electrolysers [ J ]. Int J Hydrogen Energy,2012,37:2 173-2 181.
  • 5GRIGORIEV S A, POREMBSKY V I, FATEEV V N. Pure hydrogen production by PEM electrolysis for hydrogen energy[J]. International Journal of Hydrogen Energy, 2006, 31(2): 171-175.
  • 6GRIGORIEV S A. High pressure PEM water electrolysis and corresponding safety issues[J]. International Journal of Hydrogen Energy, 2011, 36(3): 2721-2728.
  • 7MENG N, LEUNG M K H, LEUNG D Y C. Energy and exergy analysis of hydrogen production by a proton exchange membrane (PEM) electrolyzer plant[J]. Energy Conversion & Management,2008, 49(10): 2748-2756.
  • 8GHOSH C R, PARIA S. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications[J]. Che- mical Reviews, 2012, 112(4): 2373-2433.
  • 9LEE J, JEONG B, OCON J D. Oxygen electroeatalysis in chemical energy conversion and storage technologies[J]. Current Applied Ph- ysics, 2013, 13(2): 309-321.
  • 10FIERRO S, KAPAIk A, COMNINELLIS C. Electrochemical compa- rison between IrO2 prepared by thermal treatment of iridium metal and IrO2prepared by thermal decomposition of HIrC16 solution[J]. Electrochemistry Communications, 2010, 12(1): 172-174.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部