期刊文献+

阻生智齿知识图谱构建初探

Preliminary study on the construction of knowledge graph of impacted wisdom teeth
下载PDF
导出
摘要 医学类知识图谱是现代医疗的基础,阻生智齿是一种常见疾病,发病率很高,但目前的研究还缺乏系统性和全面性。本文利用自然语言处理技术,参考口腔医学领域权威著作、医学百科、真实病例等资源,用BERT-BiLSTM-CRF模型进行实体抽取,从而构建阻生智齿知识图谱,包含阻生智齿的形态分类、治疗方案、治疗药物等相关信息,为大众提供阻生智齿科普性平台,为专业医疗人员提供系统的病例整合平台,推动阻生智齿领域的研究。 Medical knowledge graph is the foundation of modern medical care.Impacted wisdom teeth,as a common disease,have a high incidence.However,current research is lack of systematic and comprehensive.In this paper,using natural language processing technology,referring to authoritative works in the field of stomatology,medical encyclopedia,real cases and other resources,the BERT-BiLSTM-CRF model is used to extract entities,so as to construct a knowledge graph of impacted wisdom teeth,including morphological classification,treatment plan,treatment drugs and other related information of impacted wisdom teeth.It will provide a popular science platform for the public,and a systematic case integration platform for professional medical personnel to promote research in the field of impacted wisdom teeth.
作者 郑宇辰 段旭博 杨威 Zheng Yuchen;Duan Xubo;Yang Wei(Medical College,Guizhou University,Guiyang,Guizhou 550025,China)
机构地区 贵州大学医学院
出处 《计算机时代》 2022年第11期109-112,共4页 Computer Era
基金 黔科合支撑([2022]一般272)。
关键词 阻生智齿 医学知识图谱 命名实体识别 BERT BiLSTM impacted wisdom teeth medical knowledge graph NER BERT BiLSTM
  • 相关文献

参考文献6

二级参考文献31

  • 1Tong Ruan, Yeli Lin, Haofen Wang, et al. A multi - strategy learning approach to competitor identification [ J ]. JIST, 2014, 8943 : 197 - 212.
  • 2Bizer, Christian and Andy Seaborne. D2RQ -treating non - RDF databases as virtual RDF graphs [ C ]. Hiroshima: Pro- ceedings of the 3rd International Semantic Web Conference (ISWC2004), 2004.
  • 3S Amit. Introducing the Knowledge Graph: things, not Strings [ EB/OL ]. [ 2015 - 12 - 20 ]. https: // googleblog, blogspot, com/2012/O5/introducing - knowledge - graph - things - not. html.
  • 4S Auer, C Bizer, G Kobilarov, et al. DBpedia: a nucleus for a web of open data [ C]. Proc. of the 6th Int. The Semantic Web and 2nd Asian Conference on Asian Semantic Web Conference, 2007:722-735.
  • 5F M Suchanek, G Kasneci, G Weikum. YAGO: a core of semantic knowledge unifying wordNet and wikipedia [ C ]. Proceedings of the 16th International Conference on World Wide Web, 2007 : 697 - 706.
  • 6Hoffart J, Suchanek F M, Berberich K, et al. YAGO2: a spatially and temporally enhanced knowledge base from Wikipedia. Artif. Intell [M]. Essex, UK: Elsevier Sci- ence Publishers Ltd, 2013:28 -61.
  • 7J Biega, E Kuzey, F M Suchanek. Inside YAGO2s: a transparent information extraction architecture [ C ]. New York: Proc of the 22th International Conference on World Wide Web, 2013 : 325 -328.
  • 8X Niu, X Sun, H Wang, et al. Zhishi. me: weaving Chinese linking open data [ C ]. Proceedings of the 10th International Conference on the Semantic Web, 2011:205 -220.
  • 9Weiguo Zheng, Lei Zou, Xiang Lian, et al. How to Build Templates for RDF Question/Answering: an uncertain graph similarity join approach [ C ]. Proceedings of SIGMOD Conference, 2015:1809 - 1824.
  • 10Lei Zou, Ruizhe Huang, Haixun Wang, et al. Natural Language Question Answering over RDF: a graph data driven approach [ C ]. Proceedings of SIGMOD Conference, 2014:313-324.

共引文献198

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部