期刊文献+

人工智能在呼吸疾病诊治中的应用

Application of artificial intelligence in diagnosis and treatment of respiratory diseases
原文传递
导出
摘要 人工智能最早应用于呼吸系统医学影像分析,从肺部放射影像开始,影像智能分析技术能对肺部肿瘤、炎性结节等占位性病变进行快速测量并检出病变,提高了医师的阅片效率。随着自然语言识别技术、机器深度学习技术等的发展,人工智能分析技术逐步拓展到了临床路径管理、慢病管理、重大疾病防控、药物研发等领域。但是,随着AI应用的深度拓展,越来越多的问题和挑战逐步显露出来:未来如何面对挑战,在呼吸疾病领域如何发展人工智能技术,以及如何安全合理地使用智能技术。本文系统回顾了AI在呼吸系统的应用现状,并针对问题提出对未来的发展预期。 Artificial intelligence(AI)was first applied to the medical image analysis of the respiratory system.Starting with the lung radiation image,the image intelligence analysis technology can quickly measure and detect the space occupying lesions such as lung tumors and inflammatory nodules,which improves the efficiency of doctors’film reading.With the development of natural language recognition technology and machine deep learning technology,artificial intelligence analysis technology has gradually expanded to clinical pathway management,chronic disease management,major disease prevention and control,drug research and development and other fields.However,with the in-depth development of AI applications,more and more problems and challenges have gradually emerged:how to face challenges in the future,how to develop artificial intelligence technology in the field of respiratory diseases,and how to use intelligent technology safely and reasonably.This paper systematically reviews the current application of AI in the respiratory system,and puts forward expectations for future development in view of the problems.
作者 卢清君 LU Qing-Jun(China-Japan Friendship Hospital,Beijing 100029,China)
出处 《生命科学》 CSCD 北大核心 2022年第8期941-947,共7页 Chinese Bulletin of Life Sciences
基金 国家重点研发计划(2016YFC1304602)。
关键词 人工智能 呼吸疾病 肺小结节 慢阻肺 呼吸音图谱 artificial intelligence(AI) respiratory diseases pulmonary nodules chronic obstructive pulmonary disease phonopneumography
  • 相关文献

参考文献8

二级参考文献44

  • 1GUO Xiang,CAO Su-mei,YU Jie-kai,HONG Ming-huang,ZHANG Chang-qing,LI Ning-wei,XIANG Yan-qun,QIAN Chao-nan,HU Xun,MIN Hua-qing,ZENG Yi-xin.Distinct serumal proteomic patterns between ascending and descending types of loco-regionally advanced nasopharyngeal carcinoma assessed by surface enhanced laser desorption ionization and artificial neural network analyses[J].Chinese Medical Journal,2005(22):1912-1917. 被引量:13
  • 2Sovijarvi A.R.A,Vanderschoot J,Earis J.E..Standardization of computerized respiratory sound analysis.European Respiratory Review,2000,10(77):585~592
  • 3Waitman L.R,Clarkson K.P,Barwise J.A.et al.Representation and classification of breath sounds recorded in an intensive.Journal of Clinical Monitoring and Computing,2000,16(2):95~105
  • 4Kandaswamy A,Kumar C,Jayaraman S.et al.Neural classification of lung sounds using wavelet coefficients.Computers in Biology and Medicine,2004,34(4):523~537
  • 5Gnitecki J,Moussavi Z,Pasterkamp H..Classification of lung sounds during bronchial provocation using waveform fractal dimensions.In:Proceedings of the 26th IEEE Annual International Conference of the IEEE EMBS,San Francisco,CA,2004,9:3844~3847
  • 6Pesu L,Helisto P,Ademovic E.et al.Classification of respiratory sounds based on wavelet packet decomposition and learning vector quantization.Technology and Health Care,1998,6(1):65~74
  • 7Antonini G,Orlandi A..Wavelet packet-based EMI signal processing and source identification.IEEE Transactions on Electromagnetic Compatibility,2001,43(2):140~148
  • 8Mallat S..A Wavelet Tour of Signal Processing(2nd Edition).Washington:Academic Press,1999
  • 9Lehrer S..Understanding Lung Sounds (3rd Edition).New York:Paperback Saunders,2002
  • 10Lisboa P.J.G..A review of evidence of health benefit from artificial neural networks in medical intervention.Neural Networks,2002,15(1):11~39

共引文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部