期刊文献+

一类Keller-Segel趋化模型解在高维空间R^(N)(N≥3)的爆破问题

Blow-up Problems of a Class of Keller-Segel Chemotaxis Models in High-dimensional Space R^(N)(N≥3)
下载PDF
导出
摘要 KellerSegel体系在数学生物学、理论物理和工程学等方面都具有广泛应用,是应用数学领域的研究热点问题之一.考虑宏观的非线性Keller Segel趋化模型,利用能量方法,首先构造一个能量表达式,然后运用高维Soblev嵌入不等式和一些微分不等式技巧,推导出能量所满足的一阶微分不等式,最终通过求解该不等式,得到KellerSegel趋化模型爆破时间的下界.将以往的结果由低维空间推广到高维空间. The Keller-Segel system,which has a wide range of applications in mathematical biology,engineering,and theoretical physics,is one of the frontiers of the research in the field of applied mathematics.We consider a macroscopic nonlinear Keller-Segel convergence model and use energy methods in this paper.First,we create an expression of energy.Then we use the high-dimensional Sobolev embedding inequality and some basic differential inequality techniques to derive the first-order differential inequality that the energy satisfies.Finally,we obtain a lower bound on the outbreak time of the Keller-Segel convergence model by solving this inequality.This article can generalize the previous results from low-dimensional space to high-dimensional space.
作者 林奕武 林培年 程健燊 LIN Yiwu;LIN Peinian;CHENG Jianshen(School of Financial Mathematics and Statistics,Guangdong University of Finance,Guangdong Guangzhou 510521,China)
出处 《河北师范大学学报(自然科学版)》 CAS 2022年第6期546-554,共9页 Journal of Hebei Normal University:Natural Science
基金 广东省科技创新战略专项资金(pdjh2021b0345) 广东金融学院大学生创新创业训练项目(202111540009)。
关键词 下界 爆破时间 KellerSegel系统 高维空间 能量表达式 lower bound explosive time Kcller-Segel system high dimensional space energy expression
  • 相关文献

参考文献5

二级参考文献19

  • 1穆春来,胡学刚,李玉环,崔泽键.BLOW-UP AND GLOBAL EXISTENCE FOR A COUPLED SYSTEM OF DEGENERATE PARABOLIC EQUATIONS IN A BOUNDED DOMAIN[J].Acta Mathematica Scientia,2007,27(1):92-106. 被引量:7
  • 2Bandle C. Brunner H.Blow-up in diffusion equations:A survey[J]. J Comput Appl Math, 1998, 97: 3-22.
  • 3Galaktionov V A, V'azquez J L. The problem of blow up in nonlinear parabolic equations[J]. Discrete Contin Dyn Syst, 2002, 8: 399-433.
  • 4Levine H A. The role of critical exponents in blow-up theorems[J]. SIAM Rev, 1990, 32: 262-288.
  • 5Straughan B. Explosive Instabilities in Mechamics[M]. Spring-Verlag, Berlin, 1998.
  • 6Levine H A. Nonexietence of global weak solutions to some properly and improperly posed problems of mathematical physics: The method of unbounded Fourier coefficients[J]. Math Ann, 1975, 214: 205-220.
  • 7Ball J M. Remarks on blow up and nonexistence theorems for nonlinear evolution equations[J]. Q J Math.Oxford, 1997, 28: 473-486.
  • 8Caffarrelli L A, Friedman A. Blow-up of solutions of nonlinear heat equations[J]. J Math Anal App1, 1988, 129: 409-419.
  • 9Friedman A, Mcleod B. Blow-up of positive solutions of semilinear heat equations[J]. J Indiana Univ Math, 1985, 34: 425-447.
  • 10Payne L E, Song J C. Lower bounds for the blow-up time in a temperature dependent Navier6Stokes flow[J]. J Math Anal Appl, 2007, 335: 371-376.

共引文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部