期刊文献+

一种求解二次约束二次规划问题的自适应全局优化算法 被引量:2

An adaptive global optimization algorithm for solving quadratically constrained quadratic programming problems
下载PDF
导出
摘要 为了更好地解决二次约束二次规划问题(QCQP),本文基于分支定界算法框架提出了自适应线性松弛技术,在理论上证明了这种新的定界技术对于解决(QCQP)是可观的。文中分支操作采用条件二分法便于对矩形进行有效剖分;通过缩减技术删除不包含全局最优解的部分区域,以加快算法的收敛速度。最后,通过数值结果表明提出的算法是有效可行的。 In order to better solve the quadratically constrained quadratic programming problem(QCQP),an adaptive linearized relaxation technique based on the framework of the branch and bound algorithm is proposed in this paper,which theoretically proved that this new delimitation technique is considerable for solving(QCQP).The branch operation in this paper adopts the conditional dichotomy to facilitate effective division of the rectangle;the reduction technique is used to delete some regions that do not contain the global optimal solution to speed up the convergence of the algorithm.Finally,the numerical results show that the proposed algorithm in this paper is effective and feasible.
作者 黄小利 高岳林 张博 刘霞 HUANG Xiaoli;GAO Yuelin;ZHANG Bo;LIU Xia(School of Mathematics and Statistics,Ningxia University,Yinchuan 750021,Ningxia,China;Ningxia Province Cooperative Innovation Center of Scientific Computing and Intelligent Information Processing,North Minzu University,Yinchuan 750021,Ningxia,China)
出处 《运筹学学报》 CSCD 北大核心 2022年第2期83-100,共18页 Operations Research Transactions
基金 国家自然科学基金(No.11961001) 宁夏高等教育一流学科建设基金(No.NXYLXK2017B09) 北方民族大学重大专项(No.ZDZX201901)。
关键词 二次约束二次规划 全局优化 分支定界 自适应线性松弛技术 条件二分法 quadratically constrained quadratic programming global optimization branch and bound adaptive linearized relaxation technique conditional dichotomy
  • 相关文献

参考文献1

二级参考文献9

  • 1Khammash M H. Synthesis of globally optimal controllers for robust performance to unstructured uncer- tainty[J]. IEEE Transactions on Automatic Control, 1996, 41:189-198.
  • 2Lodwick W A. Preprocessing nonlinear functional constraints with applications to the pooling problem[J]. ORSA Journal on Computing, 1992, 4:19-131.
  • 3Floudas C A, Visweswaran V. Primal-relaxed dual global optimization Approach[J]. Journal of Optimization Theory and Applications, 1993, 78:187-225.
  • 4An L T H. An efficient algorithm for globally minimizing a quadratic function under convex quadratic constraints[J]. Math Program Ser A, 2000, 87:401-426.
  • 5Ye Y Y. Approximating global quadratic optimization with convex quadratic constraints[J]. Journal of Gtboal Optimization, 1999:151-17.
  • 6Tim V V, Faiz A A. Difference of convex solution of quadratically constrained optimization problems[J]. European Journal of Operational Research, 2003, 148:349-362.
  • 7Qu S J, Zhang K C, Ji Y. A global optimization algorithm using parametric linearization relaxation[J]. Appl Math Comput, 2007, 186:763-771.
  • 8An L T H, Tao P D. A Combined D.C. Optimization-ellipsoidal branch and bound algorithm for solving nonconvex quadratic programming problems[J]. Journal of Combinatorial Optimization, 1998, 2:9-28.
  • 9Shen P P. Linearization method of global optimization for generalized geometric programming[J]. Applied Mathematics and Computation, 2005, 162:353-370.

共引文献5

同被引文献28

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部