期刊文献+

一种指令级动态可重构浮点处理器设计

Design of an instruction-level dynamically reconfigurable floating-point processor
下载PDF
导出
摘要 针对高性能计算中非规则寻址模式任务的加速需求,文章设计了一种指令级动态可重构浮点处理器(dynamically reconfigurable floating-point processor, DRFP),区别于传统的可重构处理器,引入一种基于融合指令的实现方式,使得该处理器兼具动态重构和乱序执行能力。该处理器作为主要计算核心集成于一款异构多核系统芯片,并在Xilinx Ultrascale系列xcvu440的FPGA芯片上进行了原型验证,系统可以稳定工作在120 MHz。实验结果表明,该处理器在兼顾高性能的同时相较于已有工作能更好地适应非规则运算,且性能提高近3倍。 Aiming at the acceleration requirements of tasks with irregular addressing modes in high-performance computing, this paper designs an instruction-level dynamically reconfigurable floating-point processor(DRFP). Different from traditional reconfigurable processors, this paper introduces an implementation method based on fusion instructions, which enables the processor to have the ability of dynamic reconstruction and out-of-order execution. The processor is integrated into a heterogeneous multi-core system chip as the main computing core, and prototype verification has been made on the Xilinx Ultrascale series FPGA chip named xcvu440. The system can work stably at 120 MHz. Experimental results show that the processor can better adapt to irregular operations compared with existing work while taking into account high performance, and the performance is improved nearly three times than that of existing work.
作者 聂言硕 张多利 孟晓飞 魏可 宋宇鲲 NIE Yanshuo;ZHANG Duoli;MENG Xiaofei;WEI Ke;SONG Yukun(School of Electronic Science and Applied Physics,Hefei University of Technology,Hefei 230601,China;IC Design Web-cooperation Research Center of Ministry of Education,Hefei University of Technology,Hefei 230601,China)
出处 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2022年第10期1341-1347,共7页 Journal of Hefei University of Technology:Natural Science
基金 国家自然科学基金资助项目(61874156) 安徽省高校协同创新资助项目(GXXT-2019-030)。
关键词 高性能计算 指令级 融合指令 乱序 多核系统 high-performance computing instruction-level fusion instruction out-of-order multi-core system
  • 相关文献

参考文献3

二级参考文献11

  • 1Cooley J W, Tukey J W. An algorithm for the machine calculation of complex Fourier series [J]. Math of Comp, 1965,19: 297--301.
  • 2Chang Y, Park S C. An enhanced memory assignment scheme for memory-based FFT processor[J]. IEICE Trans Fundamentals, 2004, E87-A: 3020-- 3024.
  • 3He S, Torkelson M. Design pipeline FFT processor for OFDM (de)modulation[C]//IEEE URSI Int Syrup Sig Syst Electron, 1998 : 257--262.
  • 4Lee S, Park S C. Modified SDF architecture for mixed DIF/ DIT FFT[C]//ICCT' 06 Communcation Technology Conference. 2007,1-- 5.
  • 5Duhamel P, Hollrnann H. Split-radix FFT algorithm[J]. Electron Lett, 1984,20(1) : 14-- 16.
  • 6He Shousheng,Torkelson M. Design and implementation of a 1024-point FFT processor[C]//IEEE Custom Integrated Circuit Conference, 1998 : 131-- 134.
  • 7Oh J Y, Lim M S. Aera and power efficient pipeline FFT algorithm[C]//Signal Processing Systems Design and Implementation, 2005 .. 520-- 525.
  • 8Babionitakis K, Manolopoulos K. A high performance VLSI FFT architecture[C]//ICECS'06, Electronics, Circuits and Systems Conference, 2006 : 810--813.
  • 9Wold E H, Despain A M. Pipeline and parallel-pipeline FFT processors for VL,SI implementation[J]. IEEE Trans Computers, 1984,C-33(5): 414--426.
  • 10丁玉美 高西全.数字信号处理[M].西安:西安电子科技大学出版社,2002..

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部