期刊文献+

Gauss线性动力系统

Gauss Linear Dynamic Systems
下载PDF
导出
摘要 设 (X ,μ ,T)是一个Gauss线性动力系统 .证明了 :(1)T是遍历的 x ∈X ,存在密度为 1的子序列 {nj} ,使得limj→∞〈RμT njx ,x 〉 =0 .(2 )T是强混合的充要条件是算子序列RμT n弱收敛于零 . WT5'BZLetWTBX(X,μ,T)WTBZ is a Gauss linear dynamic system.This paper prove the following result:(1)WTBXTWTBZ is ergodic For any x *∈X *,there exists a subsequence{n j}such that WTBZ lim WTBXDD(j→∞DD)
作者 郭新伟
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2002年第5期421-425,共5页 Journal of Shandong University(Natural Science)
关键词 Gauss线性动力系统 GAUSS测度 协方差算子 保测变换 遍历性 混和性 浑沌分解定理 Gauss measures covariance operators measures preserving transformaation dynamical system ergodicity mixing
  • 相关文献

参考文献13

  • 1Comfeld I P, Fomin S V,Sinai Y G.Ergodic Theory[M] .New York, Heidelberg- Berlin Springer- Verlag, 1980.
  • 2Sugita H,Sobolev Spaces of Wiener functionals and Malliavin' s Calculus[ J]. J Math Kyoto Univ, 1985,25: 31 ~48.
  • 3Vakhania N N.Probability Distributions on Linear Spaces[ M] . The Netherlands,Amstrerdam: Elsevier North Holland, 1981.
  • 4Kuo H H Gaussian Measures in Banach Spaces[M]. Lecture Notes in Math 526, NewYork, Heidelberg - Berlin,: Springer- Verlan, 1976.
  • 5WalterP An Introduction to Ergodic theory[M]. New York,Heidelberg - Berlin: Springer - Verlag, 1982.
  • 6Flytzanis E. Linear Dynamic System[J]. Proc Math Soc, 1976,55:367~370.
  • 7Flytzanis E. Mixing of Linear Operator in Hiilbert spaces[M].Seminaire Initiation a 1 Analyse 34eme Anne..Pairs:Universite de Pairs Ⅵ ,2000.
  • 8Flytzanis E.On the Dynamce of General Unitary Opertor[J].Monatsh Math, 1998,119(4) :267~173.
  • 9Aaronson J.An Introduction to Inifinite Ergodic Theory[M].Mathmatical Surveys and Monographs Volume 50. American Mathematical Socity, 1997.
  • 10Hoffmann J J and Pisier G.The Law of Large Number and Central Limit Theorem in Banach Spaces[J].Ann. Probab,1976,4:587~599.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部