摘要
溶液法合成的MXene材料在大规模均匀制备光电器件方面面临挑战,物理气相沉积方法为MXene材料的制备和光电器件的原位制备提供了新的途径。采用脉冲激光沉积(PLD)技术和酸化处理的方法在硅衬底上合成了高质量Ti_(3)C_(2)T_(x)薄膜,并以此高电导率的Ti_(3)C_(2)T_(x)为接触电极,成功地原位制备了Ti_(3)C_(2)T_(x)/Si肖特基二极管。光电特性表征结果表明,制备的器件具有优异的近红外响应的特性。在波长980 nm入射光辐射下,器件的响应度高达91.4 mA/W,上升时间和下降时间分别为11.9μs和60.0μs。Ti_(3)C_(2)T_(x)/Si肖特基近红外光电探测器被用作光容积描记术(PPG)传感器,由于其优异的近红外响应特性降低了环境中可见光的干扰,采集的PPG脉搏波相较于商用器件更加稳定可靠,所测心率与商用袖带式血压计测量结果相当。提出的原位制备器件方法为MXene基光电探测器的研制提供了重要参考。
MXene materials synthesized by solution method face challenges in the large-scale and uniform fabrication of optoelectronic devices.Physical vapor deposition provides a new approach for the fabrication of MXene materials and in-situ fabrication of optoelectronic devices.The high-quality Ti_(3)C_(2)T_(x) thin films were prepared by using pulsed laser deposition(PLD)and acidification treatment on Si substrate.Ti_(3)C_(2)T_(x)/Si Schottky diode was successfully in-situ fabricated with the high conductivity Ti_(3)C_(2)T_(x) as the contact electrode.The results of photoelectric characteristic characterization show that the fabricated device has excellent near-infrared response cha-racteristics.Under an incident light radiation of 980 nm wavelength,the responsivity of the device is up to 91.4 mA/W,the rise time and fall time are 11.9μs and 60.0μs,respectively.The Ti_(3)C_(2)T_(x)/Si Schottky near-infrared photodetector was used as the photoplethysmography(PPG)sensors.Due to excellent near-infrared response characteristics of Ti_(3)C_(2)T_(x)/Si Schottky near-infrared photodetectors,the interference of visible light in the environment is reduced,the collected PPG pulse waves are more stable and reliable compared with commercial devices,the measured heart rate is comparable to that of commercial cuff sphygmomanometer.The proposed in-situ fabrication method of the device provides an important reference for the development of MXene-based photodetectors.
作者
夏宇
茆书明
陆梦雪
于永强
Xia Yu;Mao Shuming;Lu Mengxue;Yu Yongqiang(School of Microelectronics,Hefei University of Technology,Hefei230601,China)
出处
《微纳电子技术》
CAS
北大核心
2022年第10期997-1003,共7页
Micronanoelectronic Technology
基金
脉冲功率激光技术国家重点实验室开放研究基金资助项目(SKL2019KF09)。