期刊文献+

求解随机向量变分不等式的样本平均逼近方法 被引量:1

Sample Average Approximation Method for Stochastic Vector Variational Inequalities
下载PDF
导出
摘要 研究了随机向量变分不等式的期望值模型。通过借助于标量化方法以及正则化间隙函数将随机向量变分不等式转化为随机优化问题。由于优化问题的目标函数中含有数学期望,故提出了求解该问题的样本平均逼近方法。在适当的假设条件下,证明了样本平均逼近问题最优值和最优解的收敛性。所得结果为研究随机向量变分不等式提供了新方法。 Studies the Expected value model of stochastic vector variational inequalities problems.By using the scalar method and regularized gap function transform stochastic vector variational inequalities to stochastic optimization problem.we propose a sample average approximation method for solving the expected value model.Under appropriate assumptions,the convergence of the optimal solution of the sample average approximation problem are proved.The results provide a new idea for the study of Stochastic Vector Variational Inequalities.
作者 黄章乙 赵玉昌 Huang Zhangyi;Zhao Yuchang(College of Mathematics and Statistics,Chongqing Jiaotong University,Chongqing 400074,China)
出处 《科学技术创新》 2022年第33期26-29,共4页 Scientific and Technological Innovation
关键词 随机向量变分不等式 样本平均逼近方法 正则化间隙函数 收敛性 stochastic vector variational inequalities sample average approximation method gap function convergence
  • 相关文献

参考文献1

二级参考文献14

  • 1F. Facchinei and J. S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, Springer, New York, 2003.
  • 2S. Dafermos, Equilibria and variational inequalities, Transportation Science, 1980, 14: 42-54.
  • 3M.Fukushima, Merit functions for variational inequality and complementarity problems, Nonlinear Optimization and Applications, G. Di Pillo and F. Giannessi eds, Plenum Press, New York, 1996.
  • 4P. Hartman and S. G. Stampacchia, On some nonlinear elliptic differential functional equations, Acta Mathematica, 1966, 115: 153-188.
  • 5G. Gurkan, A. Y. Ozge, and S. M. Robinson, Sample-path solution of stochastic variational in- equalities, Mathematical Programming, 1999, 84: 313-333.
  • 6H. Jiang and H. Xu, Stochastic approximation approaches to the stochastic variational inequality problem, IEEE Transactions on Automatic Control, 2008, 53:1462-1475.
  • 7M. Fukushima, Equivalent differentiable optimization problems and descent methods for asymmet- ric variational inequality problems, Mathematical Programming, 1992, 53:99-110.
  • 8S. M. Robinson, Analysis of sample-path optimization, Mathematics of Operations Research, 1996, 21: 5130-528.
  • 9R. Y. Rubinstein and A. Shapiro, Discrete Event Systems: Sensitivity Analysis and Stochastic Optimization by the Score Function Method, John Wiley & Sons, New York, 1993.
  • 10A. Shapiro and T. Homem-de-Mello, On the rate of convergence of optimal solutions of Monte Carlo approximations of stochastic programs, SIAM Journal on Optimiztion, 2000, 11: 70-86.

共引文献6

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部