摘要
针对医疗命名实体识别中单一模型获取文本语义特征不足的问题,提出基于深度学习多模型融合的医疗命名实体识别方法。提出一种基于变异系数的加权投票算法,构建基于BERT(Bidirectional Encoder Representations from Transformers)-MNER、IDCNN(Iterated Dilated Convolution Neural Networks)-MNER、GAT(Graph Attention Networks)-MNER的融合模型,然后提出一种基于历史信息的实体纠错算法优化融合结果。以2019年全国知识图谱与语义计算大会(CCKS2019)中文电子病历医疗实体识别语料作为实验数据,实验结果表明,该方法获得了较好的识别效果,精确率、召回率和F1值分别达到89.56%、82.77%和86.03%。
Aiming at the problem of insufficient semantic features of a single model in medical named entity recognition,this paper proposes a medical named entity recognition method based on deep learning multi-model fusion.A weighted voting algorithm based on the coefficient of variation was proposed to build a fusion model based on BERT(Bidirectional Encoder Representations from Transformers)-MNER,IDCNN(Iterated Dilated Convolution Neural Networks)-MNER and GAT(Graph Attention Networks)-MNER.Then,entity error correction algorithm based on historical information was used to optimize the fusion result.Taking the Chinese electronic clinical record medical entity recognition corpus of China Conference on Knowledge Graph and Semantic Computing in 2019(CCKS2019)as experimental data,the experimental results show that this method has achieved a good recognition effect,and the precision rate,recall rate and F1 value reached 89.56%,82.77%and 86.03%respectively.
作者
梁文桐
朱艳辉
詹飞
冀相冰
张旭
Liang Wentong;Zhu Yanhui;Zhan Fei;Ji Xiangbing;Zhang Xu(School of Computer,Hunan University of Technology,Zhuzhou 412008,Hunan,China;Hunan Key Laboratory of Intelligent Information Perception and Processing Technology,Zhuzhou 412008,Hunan,China)
出处
《计算机应用与软件》
北大核心
2022年第10期162-168,229,共8页
Computer Applications and Software
基金
科技创新2030—“新一代人工智能”重大项目(2018AAA0100400)
国家自然科学基金项目(61702177)
湖南省自然科学基金项目(2018JJ2098,2020JJ6089)
湖南省教育厅重点项目(19A133)。
关键词
命名实体识别
深度学习
融合模型
语义特征
电子病历
Named entity recognition
Deep learning
Fusion model
Semantic feature
Electronic medical records