期刊文献+

基于改进粒子群算法的新能源侧储能容量配置 被引量:20

Energy Storage Capacity Allocation of Renewable Energy Side Based on Improved Particle Swarm Optimization
下载PDF
导出
摘要 在新能源侧配置储能可有效减少弃风弃光,提高新能源消纳能力。综合考虑储能消纳风光的能力及其经济性,以风光电站弃风弃光电量和储能投资成本最小为目标构建新能源侧储能配置模型。提出基于改进多目标粒子群算法的优化算法对模型进行求解,在求出的各目标权重的基础上,采用熵权法排序得出最佳储能容量配置方案。以某风光电站为例进行仿真分析,结果表明,配置储能后可有效消纳风光,且具有较好的经济性,验证了所提方法的有效性和可行性。 The configuration of energy storage on the renewable energy side can effectively reduce the abandoned wind and solar energy, and improve the new energy consumption capacity. Firstly,the comprehensive consideration of energy storage capacity to consume wind-solar energy and its economy,the energy storage configuration model on the new energy side is constructed with the goal of minimizing the wind and solar power abandoning and energy storage investment cost of the wind-solar power station. Secondly,an optimization algorithm based on the improved multi-objective particle swarm optimization algorithm is proposed to solve the energy storage capacity allocation model,and the best energy storage capacity allocation scheme is derived by using the entropy weighting method to rank on the basis of the derived weights of each objective. Finally,the arithmetic analysis of a wind-solar station shows that the configuration of energy storage can effectively consume the wind and solar energy and has good economy,which verifies the effectiveness and feasibility of the proposed method.
作者 张冲 荣娜 ZHANG Chong;RONG Na(Department of Electrical Engineering,Guizhou University,Guiyang 550025,Guizhou,China)
出处 《电网与清洁能源》 北大核心 2022年第10期98-105,共8页 Power System and Clean Energy
基金 贵州省科学技术基金项目(2021277)。
关键词 新能源侧 储能配置 风光消纳 投资成本 粒子群优化算法 renewable energy side storage system configuration wind and solar consumption investment costs particle swarm optimization algorithm
  • 相关文献

参考文献35

二级参考文献536

共引文献1074

同被引文献336

引证文献20

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部